簡易檢索 / 詳目顯示

研究生: 蔡順如
Shuen-Ru Tsai
論文名稱: 在Pt(111)表面上甲醇裂解及一氧化碳氧化脂理論計算研究
Theoretical study of Methanol Decomposition and CO Oxidation on Clean Pt (111) Surface and Defective Pt Surface
指導教授: 江志強
Jyh-Chiang Jiang
口試委員: 王伯昌
Bo-Cheng Wang
何嘉仁
none
黃炳照
Bing-Joe Hwang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 105
中文關鍵詞: 甲醇裂解水分解一氧化碳氧化白金觸媒
外文關鍵詞: methanol decomposition, water dissociation, CO oxidation, Pt (111) surface
相關次數: 點閱:216下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文利用論計算的方法,來研究在純Pt (111)及Pt/Pt (111) 表面上進行甲醇裂解反應以及一氧化碳氧化反應。首先甲醇吸附於表面上進行脫氫反應,是經由O-H鍵裂解形成甲氧基分子,或者是經由C-H鍵裂解產生CH2OH吸附於表面上。由DFT的計算結果發現,甲醇裂解反應先經由脫O-H鍵上的氫之後,在連續脫C-H鍵上的氫,形成一氧化碳是比較容易發生的路徑。其中,水的裂解反應也扮演著非常重要的角色。在純Pt (111)表面上,水裂解反應其能障均較高於Pt/Pt (111)表面,然而考慮水雙體的裂解反應,利用水分子間的質子傳遞路徑,計算出的反應能障都較水單體裂解能障低。利用水於表面裂解所產生的氫氧基,與COtop或 CObri結合產生COOH,這兩個路徑的反應能障都為0.43 eV,此氧化反應生成CO2之能障為0.94 eV,為此反應機制之速率決定步驟。另外由COOH與OH共吸附時,反應而形成CO2,反應能障降低至0.53 eV,可見OH有利於COOH的氧化。最後我們亦考慮CO 和O氧化形成CO2的計算,其反應能障降易亦很低。
    關鍵字:Pt (111)、甲醇裂解反應、一氧化碳氧化反應、水分解


    Periodic, self-consistent, Density Functional Theory (PAW-GGA) calculations are used to study competitive paths for the dehydrogenation of methanol on Pt (111) surfaces (clean and defective Pt (111) surface). Pathway proceeding through initial O-H scission event in methanol is considered to compare pathway proceeding through an opening C-H bond scission event. My calculated results suggest that methanol dehydrogenation via CH3O and either CH2O intermediates is a kinetically feasible route; C-H bond scission to CH2OH, followed by sequential dehydrogenation, may be another realistic route. The reaction barrier via initial O-H bond scission to form the CH3O intermediate was found to be 0.1 eV lower than C-H bond scission to form CH2OH intermediate. All the reaction barriers of C-H and O-H bond scission are lower than 0.85 eV. The most favorable reaction path on Pt (111) surface involves the O-H bond breaking in CH3OH and the further dehydrogenation of the resulting CH3O species to CO and H. However, the dissociation of H2O to form OH plays a crucial role in oxidative removal of poisoning CO (CO + OH COOH CO2 + H). Therefore, the H2O dissociation to OH and CO oxidation with OH on Pt (111) surface is also investigated. The calculated results indicate that the reaction barrier of H2O dimer dissociation was found to be 0.14 eV lower than that to H2O monomer dissociation over clean Pt (111) surface. On defective Pt (111) surface, reaction barrier for H2O dimer dissociation was smaller by at least 0.15 eV than the H2O monomer dissociation. Many possible elementary steps involved in CO oxidation on clean Pt (111) surface have been investigated. First, CO can react with OH to form COOH, I find that the reaction barriers of COtop + OH  COOHcis and CObri + OH  COOHtrans (0.43 eV) are lower than that of other CO + OH oxidation reactions, indicating the both reactions are favorable to allow. Second, CO2 formation from COOH (COOH  CO2 + H) is relatively (0.94 eV). Third, the calculated results demonstrate that COOH oxidation with OH helps to markedly lower the reaction barrier. In addition, showing the reaction barrier of CO oxidation with O can be significantly reduced.
    Key Point: methanol dehydrogenation, water, CO oxidation, Pt (111) surface

    Content Acknowledgement ………………………………………………………..I Abstract ………………………………………………………………….II Content ……………………………………………………………........IV List of Tables ……………………………………………………………V List of Figures ……………………...…………………………………VIII Chapter 1 Introduction …………………………….........1 1.1 Fuel Cell ……………………………………………………………..1 1.1.1 What is a Fuel Cell? ……………………………………………1 1.1.2 DMFC Principle ……………………………………………….3 1.1.3 DMFC Technology …………………………………………….6 1.1.4 Hydrogen Production from Methanol ………………………….8 1.2 Methanol Dehydrogenation ………………………………………...10 1.3 Water Dissociation ………………………………………………….12 1.4 CO Oxidation ……………………………………………………….13 Chapter 2 Computational theory ……………………....17 2.1 Density functional theory (DFT) ……………………………….…..17 2.2 Hohenberg-Kohn theorems ……………………………………..…..17 2.3 Description of the theory …………………………………………...18 2.4 Derivation and formalism …………………………………………..19 2.5 Bloch’s Theorem ………………………………………………..…..25 2.6 K-Point Sampling …………………………………………………..26 2.7 Projected Augmented Wave (PAW) ……………………………...…27 2.8 Hartree Approximation ……………………………………………..29 2.9 GGA Approximation ……………………………………………….30 2.10 NEB method ………………………………………………………30 Chapter 3 Computational methods ………………...…..34 3.1 Computational details ………………………………………………34 3.2 Bulk Pt and Pt (111) Surface Model ………………………………..35 3.2.1 Bulk …………………………………………………………..35 3.2.2 Clean Pt (111) Surface …………………………………….….37 3.2.3 Defective Pt (111) Surface …………………………………...38 Chapter 4 Results and Discussion ……………………..40 4.1 Methanol Dehydrogenation on Clean Pt (111) surface …………….40 4.1.1 Adsorption Properties of Reaction Intermediates …………….40 4.1.2 Reaction Mechanism of Methanol Dehydrogenation on Pt (111) surface ………………………………………………….…….44 4.2 Dissociation and Adsorption of H2O on Clean Pt (111) Surface …...50 4.2.1 Adsorption Properties of H2O monomer on Clean Pt (111) Surface ……………………………………………………….50 4.2.2 H2O Dissociation on Clean Pt (111) Surface: H2O monomer ..52 4.2.3 Adsorption Properties of H2O dimer on Pt (111) Surface …….54 4.2.4 H2O Dissociation on Clean Pt (111) Surface: H2O dimmer ….56 4.3 CO Oxidation on Clean Pt (111) Surface …………………………..59 4.3.1 CO Oxidation with OH ………………………………………59 A. CO adsorption …………………………………………………..61 B. COOH adsorption ……………………………………………….63 C. CO + OH  COOH  CO2 + H ………………………………..64 C.1 COtop + OH  COOHcis  COOHtrans  CO2 + H ……………64 C.2 CObri + OH  COOHtrans  CO2 + H .........................................68 D. CO diffusion …………………………………………………….69 E. OH effect ………………………………………………………72 4.3.2 CO Oxidation with Oxygen atom …………………………….…..73 A. OH + OH  O + H2O ..................................................................75 B. O2  2O ....................................................................................76 C. H2O  O + 2H ……………………………………………...…..77 4.4 Methanol Dehydrogenation on Defective Pt (111) surface …..….…79 4.4.1 Adsorption Properties of Reaction Intermediates …………….79 4.4.2 Methanol Dehydrogenation on Defective Pt (111) Surface …..81 4.5 Dissociation and Adsorption of H2O on Defective Pt (111) ………..88 4.5.1 Adsorption Properties of H2O Monomer on Defective Pt (111) Surface ……………………………………………………….88 4.5.2 H2O Dissociation on Defective Pt (111) Surface: H2O Monomer …………………………………………………….89 4.5.3 Adsorption Properties of H2O Dimer on Defective Pt (111) Surface …………………………………………………….…..92 4.5.4 H2O Dissociation on Defective Pt (111) Surface: H2O Dimer..93 Chapter 5 Conclusion …………………………….……96 References ………………………………………….…98

    [1] Jarvi, T. D.; Stuve, E. M. Fundamental Aspects of Vacuum and Electrocatalytic Reactions of Methanol and Formic Acid on Platinum Surfaces. In Electrocatalysis; Lipkowski, J., Ross, P. N., Eds.; Wiley- VCH: New York, 1998; p 75.
    [2] Sexton, B. A. Surf. Sci. 1981, 102, 271-281.
    [3] Ehlers, D. H.; Spitzer, A.; Lu¨th, H. Surf. Sci. 1985, 160, 57-69.
    [4] Gibson, K. D.; Dubois, L. H. Surf. Sci. 1990, 233, 59-64.
    [5] Diekho¨hner, L.; Butler, D. A.; Baurichter, A.; Luntz, A. C. Surf. Sci. 1998, 409, 384-391.
    [6] Richard Huang. The Technology of Thermal and Water Management in Fuel cell ProductThe Product.
    [7] Franaszczuk, K.; Herrero, E.; Zelenay, P.; Wieckowski, A.; Wang, J.; Masel,
    R. I. J. Phys. Chem. 1992, 96, 8509-8516.
    [8] Lu, G. Q.; Chrzanowski, W.; Wieckowski, A. J. Phys. Chem. B 2000, 104,
    5566-5572.
    [9] Sriramulu, S.; Jarvi, T. D.; Stuve, E. M. J. Electronanal. Chem. 1999, 467,
    132 - 142.
    [10] Mavrikakis, M.; Barteau, M. A; J. Mol. Catal. A 131, 135 (1998)
    [11] Sung Sakong, Axel Gross. J. Phys. Chem. A 2007, 111, 8814 – 8822.
    [12] Kua, J.; Goddard, W. A. J. Am. Chem. Soc. 1999, 121, 10928-10941.
    [13] Ishikawa, Y.; Liao, M.; Cabrera, C. R. Surf. Sci. 2000, 463, 66-80

    [14] Jeff Greeley and Manos Mavrikakis*, J. Am. Chem. Soc. 2004, 126, 3910-3919
    [15] Sexton, B. A. Surf. Sci. 1981, 102, 271-281.
    [16] Ehlers, D. H.; Spitzer, A.; Lu¨th, H. Surf. Sci. 1985, 160, 57-69.
    [17] Gibson, K. D.; Dubois, L. H. Surf. Sci. 1990, 233, 59-64.
    [18] Diekho¨hner, L.; Butler, D. A.; Baurichter, A.; Luntz, A. C. Surf. Sci. 1998,
    409, 384-391.
    [19] Peck, J. W.; Mahon, D. I.; Beck, D. E.; Bansenaur, B.; Koel, B. E. Surf.
    Sci. 1998, 410, 214-227.
    [20] Henderson, M. A.; Mitchell, G. E.; White, J. M. Surf. Sci. 1987, 188, 206-
    218.
    [21] Peremans, A.; Maseri, F.; Darville, J.; Gilles, J. M. Surf. Sci. 1990, 227,
    73 - 78.
    [22] Kizhakevariam, N.; Stuve, E. M. Surf. Sci. 1993, 286, 246-260.
    [23] Attard, G. A.; Ebert, H. D.; Parsons, R. Surf. Sci. 1990, 240, 125-135.
    [24] Attard, G. A.; Chibane, K.; Ebert, H. D.; Parsons, R. Surf. Sci. 1989, 224,
    311-326.
    [25] Franaszczuk, K.; Herrero, E.; Zelenay, P.; Wieckowski, A.; Wang, J.; Masel,
    R. I. J. Phys. Chem. 1992, 96, 8509-8516.
    [26] Wang, J.; Masel, R. I. Surf. Sci. 1991, 243, 199-209.
    [27] M. A. Henderson, Surf. Sci. Rep. 46, 1 (2002).
    [28] P. A. Thiel and T. E. Madey, Surf. Sci. Rep. 7, 211 (1987)
    [29] D. L. Doering and T. E. Madey, Surf. Sci. 123, 305 (1982)
    [30] S. Haq, J. Harnett, and A. Hodgson, Surf. Sci. 505, 171 (2002)
    [31] 6M. Morgenstern, T. Michely, and G. Comsa, Phys. Rev. Lett. 77, 703
    (1996).
    [32] K. Jacobi, K. Bedürftig, Y. Wang, and G. Ertl, Surf. Sci. 472, 9 (2001)
    [33] T. Wagner and T. E. Moylan, Surf. Sci. 191, 121 (1987)
    [34] R. Dreizler, E. Gross, Density Functional Theory (Plenum Press, New York, 1995).
    [35] Kohanoff, J., Electronic Structure Calculations for Solids and Molecules: Theory and Computational Methods (Cambridge University Press, 2006).
    [36] P. Hohenberg and W. Kohn, Phys. Rev. 136 (1964) B864
    [37] L.H. Thomas, The calculation of atomic fields, Proc. Camb. Phil. Soc, 23 542-548
    [38] G.. Kresse, J. Hafner, Phys. Rev. B 47 (1993)
    [39] G.. Kresse, J. Furthmuller, Comput. Mater. Sci. 6 (1995) 15
    [40] G.. Kresse, J. Furthmuller, Phys. Rev. B 54 (1996) 11169
    [41] White, K. A.; Bird, D. M. Phys. Rev. B 1994, 50, 4954
    [42] Structure data of Elements and Intermetallic phases, Springer, Berlin, 1977, Vol IIIb
    [43] Branger, V.; Pelosin, V.; Badawi, K. F.; Goudeau, P. Study of the mechanical and microstructural state of platinum thin films. Thin Solid Films 1996, 275, 22-24
    [44] Henkelman, G..; Uberuaga, B. P.; Jonsson, H. J. Chem. Phys. 2000, 113, 9901
    [45] Mills, G.; Jonsson, H.; Schenter, G. S. C. Surf. Sci. 1995, 324, 305
    [46] J. G. Wang, B. Hammer, J. Chem. Phys. 124, 184704 (2006)
    [47] Tayana E. Shubina,; Christoph Hartning,; Marc. T. M. Koper, Phys. Chem. Chem. Phys., 2007, 6. 4215-4221.
    [48] Tayana E. Shubina,; Marc T. M. Koper,; Electrochemistry communications 8 (2006) 703-706.
    [49] J. G. Wang, B. Hammer,; Journal of catalysis 243 (2006) 192 -198.
    [50] C.D. Taylor, M.J. Janil, M. Neurock, R.G. Kelly, Mol. Sim., Submitted for publication.
    [51] C.D. Taylor, Doctoral Dissertation, University of Virginia, Charlottesville, VA, USA, 2006
    [52] G. Mills, H. Jo’nsson, and G. K. Schenter, Surf. Sci. 324, 305 (1995)
    [53] Tayana E. Shubina,; Marc T. M. Koper,; Electrochemistry communications 8 (2006) 703-706.
    [54] Hsin-Tsung Chen, Djamaladdin G. Musaev, and M. C. Lin*, J. Phys. Chem. C 2007, 111, 17333-17339.
    [55] J. G. Wang, B. Hammer*, Journal of Catalysis 243 (2006) 192-198.
    [56] Ruuska, H.; Pakkanen, T. A.; Rowley, R. L. J. Phys. Chem. B 2004, 108, 2614.
    [57] Ren, J.; Meng, S. J. Am. Chem. Soc. 2006, 127, 9282.
    [58] Meng, S.; Wang, E. G.; Gao, S. Phys. Rev. B 2004, 69, 195404.
    [59] Morgenstern, K.; Nieminen, J. Phys. Rev. Lett. 2002, 88, 66102.
    [60] Mitsui, T.; Rose, M. K.; Fomin, E.; Ogletree, D. F.; Salmeron, M. Science (Washington, DC, US.) 2002, 297, 1850.
    [61] Pirug, G.; Ritke, C.; Bonzel, H. P. Surf. Sci. 1991, 241, 289.
    [62] Nerlov, J., and Chorkendorff, I., Catal. Lett. 54, 171 (1998).
    [63] Ogletree, D. F.; Vanhove, M. A.; Somorjai, G. A. Surface Science 1986, 173, 351.
    [64] P. J. Feibelman, B. Hammer, J. K. Norskov, F. Wagner, M. Scheffler, R. Stumpf, R. Watwe and J. Dumesic, J. Phys. Chem. B, 2001, 105, 4018–4025
    [65] A. Gil, A. Clotet, J. M. Ricart, G. Kresse, M. Garcı’a-Herna’ ndez, N. Ro‥ sch and P. Sautet, Surf. Sci., 2003, 530, 71.
    [66] G. Kresse, A. Gil and P. Sautet, Phys. Rev. B, 2003, 68, 73401.
    [67] Yajima, T.; Uchida, H.; Watanabe, M. Journal of Physical Chemistry B 2004, 108, 2654.
    [68] Iwasita, T.; Nart, F. C.; Vielstich, W. Berichte Der Bunsen-Gesellschaft-Physical Chemistry Chemical Physics 1990, 94, 1030.
    [69] Desai, S. K.; Neurock, M.; Kourtakis, K. J. Phys. Chem. B 2002, 106, 2559-2568.
    [70] Kizhakevariam, N. ; Stuve, E. M. Surf. Sci. 1993, 286, 246.
    [71] Ehlers, D. H.; Spitzer, A.; Luth, H. Surf. Sci. 1985, 160, 57.

    QR CODE