簡易檢索 / 詳目顯示

研究生: 蔡欽宇
Chin-Yu Tsai
論文名稱: 聚醚-聚乳酸雙團聯共聚物在水溶液中微胞化熱力學與微胞尺寸之電解質效應
Effect of electrolytes on thermodynamics of micellization and size of the micells of polyether-poly(L-lactic acid)diblock copolymers in aqueous solutions
指導教授: 胡孝光
Shiaw-Guang Hu
口試委員: 許貫中
Kung-Chung Hsu
蔡協致
Hsieh-Chin Tsai
童世煌
Shih-Huang Tung
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 81
中文關鍵詞: 聚乳酸共聚物鹽析微胞熱力學
外文關鍵詞: Poly(l-latic acid) copolymer, Salting, Micell, Thermodynamics
相關次數: 點閱:254下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究使用聚乙二醇單甲醚與左旋-丙交酯以開環聚合方法合成聚乙二醇單甲醚-聚乳酸(methoxypoly(ethylene glycol)-poly(L-lactide))(mPEG-PLLA)雙團聯共聚物。將其中親水段mPEG聚合度固定為113,並合成兩種PLLA疏水段(聚合度為168、 35和301)的共聚物,利用凝膠滲透層析儀(GPC)對共聚物進行分子量的分析。共聚物加入去離子水和電解質(NaSCN、NaClO4和NaI)水溶液中,並改變電解質濃度及溶液的環境溫度,使用螢光探針法量測臨界微胞濃度,利用臨界微胞濃度的自然對數與電解質濃度的關係,計算其冪次關係中的指數n和微胞化熱力學參數,再以動態光散射儀(DLS)測量微胞粒徑。探討溫度、電解質濃度、電解質物種及高分子疏水鏈段聚合度對臨界微胞濃度、微胞化熱力學性質及微胞粒徑之影響。實驗結果發現臨界微胞濃度隨著溫度上升而增加,隨著疏水鏈段聚合度愈小而增加。當電解質(NaSCN和NaClO4)濃度增加時,臨界微胞濃度上升,而在NaI水溶液中,臨界微胞濃度隨著電解質濃度上升而下降。共聚物的疏水鏈段聚合度減小,造成臨界微胞濃度在電解質與純水中的比值越大,鹽析(salting)現象愈明顯,並發現臨界微胞濃度比值的自然對數與電解質濃度冪次關係中的指數值越小,NaSCN溶液中兩者的比值較NaClO4大,微胞化的電解質效應較明顯,指數值也越小。觀察臨界微胞濃度與疏水鏈段聚合度的關係後發現,溫度愈高,臨界微胞濃度與疏水鏈段聚合度冪次關係中的指數絕對值越小;電解質(NaSCN、NaClO4)濃度越高指數的絕對值越大,加入NaI後濃度越高指數絕對值越小。經由微胞化熱力學參數的計算結果得知,共聚物中PLLA鏈段聚合度愈小,微胞化自由能(負值)、微胞化焓(負值)和微胞化熵(正值)愈大。隨著電解質濃度(NaSCN和NaClO4)上升,微胞化自由能(負值)、微胞化焓(負值)和微胞化熵(正值)會增加。微胞化自由能為負值,表示共聚物在水溶液中的微胞化為自發性過程,且微胞化自由能、焓和熵受到NaSCN的影響較NaClO4明顯。隨著電解質(NaI)濃度上升,微胞化自由能下降,得知在salting-in現象中,微胞化自由能隨電解質濃度上升而增加,而在salting-out現象中兩者關係相反。平均微胞粒徑隨NaSCN濃度上升而減少,NaI濃度上升而增加;在NaI溶液中的粒徑變化量較NaSCN溶液中明顯。根據共聚物的微胞體積與微胞化自由能的線性關係,得知在兩類salting現象時形成微胞推動力越大微胞體積越大。根據結果微胞化自由能隨著電解質濃度的變化觀察到電解質加入共聚物溶液中發生salting-in或salting-out現象及會造成微胞體積的改變。


Methoxypoly(ethylene glycol)-Poly(L-lactide) (mPEG-PLLA) diblock copolymers with fixed mPEG length (degree of polymerization= 113) and various PLLA segment lengths (degree of polymerization= 168、35 and 301) were synthesized. The molecular weights of copolymers were analyzed by using gel permeation chromatography (GPC).
We use fluorescent probe to determine the critical micelle concentration (CMC) of diblock copolymer solutions with various concentrations of NaSCN , NaClO4 or NaI at 25 to 45℃,and calculate the power law exponents for the natural logarithm of CMC versus electrolytic concentration and thermodynamic parameters of micellization. The micelle size is also measured with dynamic light scattering (DLS). We research the effects of degree of polymerization, electrolyte species and concentrations on the CMC, thermodynamic properties of micellization and the particle size of micelles.Experimental results show that CMC increases with rising temperature, and increases with decreasing the degree of polymerization of hydrophobic block chains. The CMC are higher with the higher concentrations of electrolyte solutions(NaSCN and NaClO4). The CMC is lower with the higher concentrations of NaI solutions. The ratio of the CMC in the electrolyte solutions over in water is higher with decreasing the degree of polymerization of hydrophobic block chains, and the power law exponent for the natural logarithm of the ratio of the CMC in the electrolyte solutions over in water versus electrolyte concentrations is lower with decreasing the degree of polymerization of hydrophobic block chains. The ratio of the CMC in the NaSCN aqueous solutions over in water is higher than in NaClO4 aqueous solutions over in water, the power law exponent for the natural logarithm of the ratio of the CMC in the electrolyte solutions over in water versus electrolyte concentrations is lower in the NaSCN aqueous solutions than NaClO4 aqueous solutions. According to the power law exponents for CMC versus the degree of polymerization of hydrophobic segments, it is found that absolute values of exponents are lower with rising temperature. The absolute values of exponents are higher with the higher concentrations of electrolyte solutions(NaSCN and NaClO4). The absolute values of exponents are lower with the higher concentrations of NaI solutions.Calculated thermodynamic parameters of micellization show that the values of Gibbs energy of micellization (△Gmic, negative value), enthalpy of micellization (△Hmic, negative value) and entropy of micellization (△Smic, positive value) increase with decreasing the degree of polymerization of PLLA chains. The negative Gibbs energy indicates that micellization process is spontaneous. The values of △Gmic , △Hmic and △Smic increase with increasing concentrations of electrolyte solutions(NaSCN and NaClO4). The △Gmic 、△Hmic and △Smic are affected more significantly by NaSCN than NaClO4. The values of △Gmic decrease with increasing concentrations of NaI aqueous solutions, and the results show that in salting-in effect the values of △Gmic increase with increasing electrolyte concentrations, and in salting-out effect the values of △Gmic decrease with increasing electrolyte concentrations.The size of micelle decreases with increasing concentration of the NaSCN aqueous solutions, and increases with increasing concentration of the NaI aqueous solutions. The varitions of size with electrolyte concentrations in NaI aqueous solutions are more pronounced than in NaSCN aqueous solutions.According to the linear relationship between the micelle volume and the △Gmic, it is found that in salting effect the larger micelle volume is formed by larger micelle driving force. According to the variation of the △Gmic with electrolyte concentration,we observe the salting-in or salting-out effect in the copolymer solutions with electrolytes and it affects micelle volume.

中文摘要I 英文摘要III 誌謝V 目錄VI 圖表索引IX 一、前言 1 二、實驗方法7 2.1合成mPEG-PLLA雙團聯共聚物7 2.2測凝膠滲透之分析8 2.3測量水溶液中臨界微胞濃度9 2.3.1配製待測臨界微胞濃度之共聚物溶液9 2.3.2螢光光譜測量臨界微胞濃度10 2.4測量水溶液中微胞粒徑10 2.4.1配製待測微胞粒徑之共聚物溶液10 2.4.2動態光散射測量微胞粒徑11 三、結果與討論12 3.1 mPEG-PLLA雙團聯共聚物之聚合反應12 3.2 mPEG-PLLA雙團聯共聚物之組成分析13 3.3 mPEG-PLLA雙團聯共聚物之臨界微胞濃度14 3.3.1臨界微胞濃度之探討14 3.3.2溫度對臨界微胞濃度影響15 3.3.3高分子效應16 3.3.4電解質對臨界微胞濃度之影響17 3.3.5臨界微胞濃度的自然對數與電解質濃度的關係18 3.3.6臨界微胞濃度與疏水鏈段聚合度的關係19 3.4 mPEG-PLLA雙團聯共聚物之微胞化熱力學性質20 3.4.1微胞化熱力學關係式之探討20 3.4.2微胞化熱力學性質之分析22 3.4.3電解質濃度對微胞化熱力學性質之影響23 3.4.5電解質物種效應24 3.5 mPEG-PLLA雙團聯共聚物之微胞粒徑24 3.5.1微胞粒徑之分析24 3.5.2微胞半徑與微胞疏水鏈段聚合度的標度關係25 3.5.3 微胞半徑與微胞化自由能的關係26 四、結論27 五、參考文獻29 附錄一 符號對照表61 附錄二 電解質效應63 附錄三 臨界微胞濃度與疏水鏈段聚合度的關係64 附錄四 微胞熱力學參數65

1.L. Yang, Z. Zhao, J. Wei, A. Ghzaoui and S. Li, Micelles formed by self-assembling of polylactide/poly(ethylene glycol) block copolymers in aqueous solutions. Journal of Colloid and Interface Science 314, 470-7 (2007).
2.W. Lee, Y. Li and I. Chu, Amphiphilic poly(D,L-lactic acid)/poly(ethylene glycol)/poly(D,L-lactic acid) nanogels for controlled release of hydrophobic drugs. Macromolecular Bioscience 6, 846-54 (2006).
3.A.Vila, A.Sanchez, C. Pérez and M. J. Alonso , PLA‐PEG Nanospheres: New Carriers for transmucosal delivery of proteins and plasmid DNA. Polymers for Advanced Technologies 13, 851-8 (2002).
4.M. L. Adams, A.Lavasanifar and G. S. Kwon, Amphiphilic block copolymers for drug delivery. Journal of Pharmaceutical Sciences 92, 1343-55 (2003).
5.T. Riley, S.Stolnik, C. R. Heald, C. D. Xiong, M. C. Garrnett, L. Illum and S. S. Davis, Physicochemical evaluation of nanoparticles assembled from poly(lactic acid)−poly(ethylene glycol) (PLA−PEG) block copolymers as drug delivery vehicles. Langmuir 17, 3168-74 (2001).
6.S. Hagan, A.Coombes, M. C. Garnett, S.E. Dunn, M. C. Davies, L. Illum and S. S. Davis, Polylactide-poly (ethylene glycol) copolymers as drug delivery systems. 1. Characterization of water dispersible micelle-forming systems. Langmuir 12, 2153-61 (1996).
7.S. Li and M. Vert, Synthesis, characterization and stereocomplex-induced gelation of block copolymers prepared by ring-opening polymerization of L (D)-lactide in the presence of poly (ethylene glycol). Macromolecules 36, 8008-14 (2003).
8.M. J. Rosen, Surfactants and interfacial phenomena, John Wiley & Sons, Inc. , New York, USA. Chapter 3 (2004).
9.J. L. Anderson, V. Pino, E. C. Hagberg, V. V. Sheares and D. W. Armstrong , Surfactant solvation effects and micelle formation in ionic liquids. Chemical Communications, 2444-5 (2003).
10.T. Inoue, H. Ebina, B. Dong and L. Zheng, Electrical conductivity Study on micelle formation of long-chain imidazolium ionic liquids in aqueous solution. Journal of Colloid and Interface Science 314, 236-41 (2007).
11.H. Schott, Solubilization of a water-insoluble dye as a method for determining micellar molecular weights. The Journal of Physical Chemistry 70, 2966-73 (1966).
12.X. Li, J. Ji, X. Wang, Y. Wang and J. Shen, Stability and drug loading of spontaneous vesicles of comb-like PEG derivates. Macromolecular Rapid Communications 28, 660-5 (2007).
13.A. V. Kabanov,I. R. Nazarova , I. V. Astafieva, E. V. Batrakova, V. Y. Alakhov and A. A. Yaroslavov, Micelle formation and solubilization of fluorescent probes in poly(oxyethylene-b-oxypropylene -b-oxyethylene) solutions. Macromolecules 28, 2303-14 (1995).
14.C. L. Zhao, M. A. Winnik, G. Riess and M. D. Croucher, Fluorescence probe techniques used to study micelle formation in water-soluble block copolymers. Langmuir 6, 514-6 (1990).
15.Z. Gao and A. Eisenberg, A model of micellization for block copolymers in solutions. Macromolecules 26, 7353-60 (1993).
16.K. Kalyanasundaram and J. Thomas, Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems. Journal of the American Chemical Society 99, 2039-44 (1977).
17.L. Liu, C. Li , X. Liu and B. He, Micellar formation in aqueous milieu from biodegradable triblock copolymer polylactide/poly(ethylene glycol)/polylactide ,Polymer, 31, 845 (1999).
18.M. Wilhelm, C.L. Zhao, Y. Wang, R. Xu and M. A. Winnik , Poly(styrene-ethylene oxide) block copolymer micelle formation in water: a fluorescence probe study, Macromolecules, 24, 1033 (1991).
19.S. Z. Moghaddam and E. Thormann, Hofmeister Effect of salt mixtures on thermo-responsive poly (propylene oxide). Physical Chemistry Chemical Physics 17, 6359-66 (2015).
20.J. Mata, P. Majhi, C. Guo, H. Liu and P. Bahadur, Concentration, temperature, and salt-induced micellization of a triblock copolymer pluronic L64 in aqueous media. Journal of Colloid and Interface Science 292, 548-56 (2005).
21.S. Saito, Salt effect on polymer solutions. Journal of Physical Chemistry vol. 7,1789-1802(1967).
22.P. Alexandridis and J. F. Holzwarth, Differential scanning calorimetry investigation of the effect of salts on aqueous solution properties of an amphiphilic block copolymer (Poloxamer). Langmuir 13, 6074-82 (1997).

23.W. Mcdevit and F. Long, The activity coefficient of benzene in aqueous salt solutions. Journal of the American Chemical Society 74, 1773-7 (1952).
24.W. T. R. Carale, Q. T. Pham and D. Blankschtein, Salt effects on intrL. Masterton and T. P. Lee, Salting coefficients from scaled particle theory. The Journal of Physical Chemistry 74, 1776-82 (1970).
25.J. M. Bockris , J. Bowler-Reed and J. Kitchener, The salting-in effect. Trans. Faraday Soc. 47, 184-92 (1951).
26.amicellar interactions and micellization of nonionic surfactants in aqueous solutions. Langmuir 10, 109-21 (1994).
27.V. Aswal and J. Kohlbrecher, Entropy-induced micellization of block copolymer in aqueous solution in presence of selective additives. Chemical Physics Letters 425, 118-22 (2006).
28.R. Sadeghi and F. Jahani, Salting-in and salting-out of water-soluble polymers in aqueous salt solutions. Journal of Physical Chemistry B 116,5234-41 (2012).
29.Y. Su, X. Wei and H. Liu, Effect of sodium chloride on association behavior of poly (ethylene oxide)–poly (propylene oxide)–poly (ethylene oxide) block copolymer in aqueous solutions. Journal of Colloid and Interface Science 264, 526-31 (2003).
30.N. Pandit, T. Trygstad, S. Croy, M. Bohorquez and C. Koch, Effect of salts on the micellization, clouding, and solubilization behavior of pluronic F127 solutions. Journal of Colloid and Interface Science 222, 213-20 (2000).
31.Y. Hu, X. Jiang, Y. Ding, L. Zhang, C. Yang, J. Zhang, J. Chen and Y. Yang, Preparation and drug release behaviors of nimodipine-loaded poly (caprolactone)–poly (ethylene oxide)–polylactide amphiphilic copolymer nanoparticles. Biomaterials 24, 2395-404 (2003).
32.L. Zhang and A. Eisenberg, Morphogenic effect of added ions on crew-cut aggregates of polystyrene-b-poly (acrylic acid) block copolymers in solutions. Macromolecules 29, 8805-15 (1996).
33.黃思喬, 聚醚-聚乳酸雙團聯共聚物水溶液中自組裝及電解質效應,臺灣科技大學碩士論文, 第50頁(2015)。
34.D. C. Dong and M. A. Winnik, The Py scale of solvent polarities. Canadian Journal of Chemistry 62, 2560-5 (1984).
35.Z. Dai, L. Piao, X. Zhang, M. Deng, X. Chen and X. Jing, Probing the micellization of diblock and triblock copolymers of poly(l-lactide) and poly(ethylene glycol) in aqueous and NaCl salt solutions. Colloid and Polymer Science 282, 343-50 (2004).
36.M. Lund, L. Vrbka and P. Jungwirth, Specific ion binding to nonpolar surface patches of proteins. Journal of the American Chemical Society 130, 11582-3 (2008).
37.R. Zangi, M. Hagen and B. J. Berne, Effect of ions on the hydrophobic interaction between two plates. Journal of the American Chemical Society 129, 4678-86 (2007).
38.K. D. Collins, Charge density-dependent strength of hydration and biological structure. Biophysical Journal 72, 65-76 (1997).
39.T. R. Carale, Q. T. Pham and D. Blankschtein, Salt effects on intramicellar interactions and micellization of nonionic surfactants in aqueous solutions. Langmuir 10, 109-21 (1994).

40.X. Li, J.Ji, X. Wang, Y. Wang and J. Shen, Stability and drug loading of spontaneous vesicles of comb-like PEG derivates. Macromolecular Rapid Communications 28, 660-5 (2007).
41.A. V. Kabanov, I. R. Nazarova , I. V. Astafieva, E. V. Batrakova, V. Y. Alakhov, A. A. Yaroslavov and V. A. Kabanov, Micelle formation and solubilization of fluorescent probes in poly(oxyethylene-b-oxypropylene -b-oxyethylene) solutions. Macromolecules 28, 2303-14 (1995).
42.P. C. Hiemenz and T. P. Lodge, Polymer chemistry, second edition, CRC Press, Chapter 7, 9 (2007).
43.Z. Zhou and B. Chu, Anomalous micellization behavior and composition heterogeneity of a triblock ABA copolymer of (A) ethylene oxide and (B) propylene oxide in aqueous solution. Macromolecules 21,2548-54(1988).
44.M. J. Schick, editor, Nonionic surfactants: physical chemistry, Marcel Dekker, New York, USA, Chapter 5 (1987).
45.A. Holtzer, Use of the van't Hoff relation in determination of the enthalpy of micelle formation. The Journal of Physical Chemistry 78, 1442-3 (1974).
46.D. Attwood, editor, Surfactant systems: their chemistry, pharmacy, and biology. Chapman and Hall, Chapter 3 (1983).
47.C. J. Oss, Long‐range and short‐range mechanisms of hydrophobic attraction and hydrophilic repulsion in specific and aspecific interactions. Journal of Molecular Recognition 16, 177-90 (2003).
48.G. Pilcher, M. Jones, L. Espada and H. Skinner, Enthalpy of micellization I. sodium n-dodecylsulphate. The Journal of Chemical Thermodynamics 1, 381-92 (1969).
49.K. Mukherjee, S. Moulik and D. Mukherjee, Thermodynamics of micellization of Aerosol OT in polar and nonpolar solvents. A Calorimetric Study. Langmuir 9, 1727-30 (1993).
50.A.Halperin, Polymeric micelles: a star model. Macromolecules 20, 2943-6 (1987).
51.L. Liebert, editor, Solid State Physics, Supplement 14, Academic Press, New York (1978).
52.S. C. Joshi, Sol-gel behavior of hydroxypropyl methylcellulose (HPMC) in ionic media including drug release. Materials 4, 1861-905 (2011).

無法下載圖示
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 2018/08/28 (國家圖書館:臺灣博碩士論文系統)
QR CODE