簡易檢索 / 詳目顯示

研究生: 黃雋中
Chun-Chung - Huang
論文名稱: 奈米碳管修飾電紡多孔型態三醋酸纖維素纖維膜於重金屬元素感測之研究
Carbon Nanotubes Modified Electrospun Cellulose Triacetate Porous Fiber Membranes for Heavy Metal Ions Sensing
指導教授: 吳昌謀
Chang-mou Wu
口試委員: 鄭國彬
Kou-Bin Cheng
李俊毅
Jiunn-Yih Lee
胡衍榮
Hu, Yan-Rong
林清安
Ching-an Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 65
中文關鍵詞: 廢料回收三醋酸纖維素靜電紡絲多孔纖維重金屬感測
外文關鍵詞: Recycle, cellulose triacetate, electrospinning, porous fibers, heavy metal ions sensing
相關次數: 點閱:451下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究主要分為兩大主軸,一為開發多孔結構電紡纖維,並探討各項參數對孔洞形成機制之影響,二為研究電紡纖維結構對重金屬離子吸附之影響,並檢測其感測效果。第一部分以三醋酸纖維素作為研究材料,藉由回收工業級三醋酸纖維素偏光板保護膜之廢料,改善廢料處理及達到環境友善之目的,此外使用靜電紡絲技術在混和溶劑系統下,結合水蒸氣誘發相分離之機制,製備多孔結構電紡纖維膜;再探討各項電紡參數,如電壓、溫度等對孔洞形成機制之影響後,找出室溫下最佳化電紡參數,得到均勻且具有一定深度之多孔纖維膜。第二部分則藉由調整電紡纖維型態,應用於重金屬離子感測,比較多孔結構、纖維直徑及奈米物質添加對金屬感測靈敏度的差異。
在第一部分之研究,藉由SEM及TEM進行結構微觀分析後,發現MC-DMF溶劑系統在室溫下,具有最穩定及均勻的多孔型態,纖維直徑約為1.7µm,此外本研究比較了電壓、溫度和工作距離等參數對孔洞形成之影響,得到溫度是孔洞形成的關鍵因素。最後,本研究在室溫下以MC-DMF混和溶劑系統在最佳化參數(15kV、15cm)及濕度50%的條件
第二部分藉由調整纖維結構及直徑,抑或添加奈米物質等方式,探討對感測效果之影響,經由電化學分析結果顯示添加磺酸化處理後之奈米碳管,能有效提高感測電紡膜之靈敏度,相較未添加之試片提升了6.7倍,其中20ppm的銅離子添加濃度下無孔的MC-EtOH系統較有多孔結構的MC-DMF系統靈敏度高,但無孔結構的偵測極限則較低,在最佳化電紡參數下製備多孔結構三醋酸纖維素薄膜,並添加磺酸化後處理之奈米碳管,能得到最高之靈敏度5.14 µA/ppm,對重金屬離子具有良好的感測性,且因電紡薄膜保護電極,改善一般分析方法對電極產生之損耗,且具有直接容易、環保,且準確有效率之優點。


In this study, there were two parts of the research. One is developing manufacturing process for porous morphology fibers through electrospinning techniques. And further discuss the influences of different parameters on pores formation mechanism. The other is investigating the adsorption and sensing performances on heavy metal ions by switching different fiber morphology. In the first part, cellulose triacetate (CTA) was used as the main polymer. By recycled the polarizers industrial CTA film waste, the conventional waste disposal could be improved for environmental friendly purposes. Furthermore, using electrospinning techniques in mixed solvent system which was also combined with vapor induced phase separation, the porous structure fiber membranes were derived. After that, discussing the effects of electrospinning parameters such as voltage, temperature and working distance on pores formation and morphology. Therefore, after optimizing the parameters, fine and deep porous morphology fiber were stably fabricated under room temperature. In the second part, the morphology of fiber membranes were adjusted to porous and non-porous structure, in order to determine the most suitable structure for heavy metal ions sensing. Moreover, the addition of nano materials and fiber diameters were also be investigated to discover the effects on sensitivity.
In the first part research, the morphology was examined with SEM and TEM. The results showing that MC-DMF solvent system could produce the most stable and uniform porous fiber membranes with a diameter around 1.7µm. In addition, after comparing the effect of electrospinning parameters on pores formation mechanism, temperature factor was concluded to be the most important factor. At last, the room temperature manufacturing process of CTA porous fiber membranes were developed in MC-DMF solvent system and under optimized electrospinning parameters.
In the second part, with the ability to adjust fiber structure and diameter, this study investigated the influences of fiber morphology and of nanomaterials additives on sensing performance. The electrochemical analysis results indicated that the addition of sulfonated carbon nanotube could significantly enhance the sensitivity which is 6.7 times than the original CTA porous membranes. Besides, as copper ions concentration beneath 20ppm, non-porous CTA membranes had better sensitivity than porous CTA membranes. However, as the concentration surpassed 20ppm, porous CTA membranes showed a better detection limit. As a result, doping sulfonated carbon nanotubes with optimized CTA porous membranes, showing well detecting ability upon metal ions with sensitivity of 5.14 µA/ppm. The sensing membranes not only protected the electrode from the damage caused by common analysis methods, but also had the advantages of eco-friendly, accurate, simple and effective.

目錄 摘 要 II Abstract IV 致 謝 VII 目錄 IX 圖目錄 12 表目錄 14 第一章、 前言 15 1.1 引言 15 1.2 研究動機與目的 20 第二章、文獻回顧 22 2.1 靜電紡絲技術 22 2.2 去除重金屬離子之方法 26 2.3 重金屬離子檢測方法 28 第三章、實驗 31 3.1 實驗藥品 31 3.2 實驗設備及測試儀器 32 3.3 實驗流程與方法 33 3.4 試片製備 33 3.4.1 電紡溶液配置 33 3.4.2 碳管磺酸化處理 34 3.4.3 靜電紡絲程序 34 3.4.4 電化學試片製備 35 3.5測試方法 37 3.5.1 纖維膜結構型態分析 37 3.5.2 孔徑及過濾效能分析 37 3.5.4 表面積及孔徑分析儀(BET) 39 3.5.5 電化學分析 39 3.5.7 吸附度分析 40 第四章、結果與討論 42 4.1不同溶劑系統的電紡纖維型態分析 42 4.2探討溫度對孔洞形成及纖維型態的影響 44 4.3電紡參數對纖維型態的影響 48 4.4多孔纖維特性的鑑定 51 4.5電化學特性分析 53 4.6 金屬離子感測靈敏度分析 54 4.7 CTA電紡纖維膜吸附度分析 58 第五章、結論 60 參考文獻 61

1. 馬遠榮, 奈米科技. 2002: 商周出版.
2. 吳大誠, 杜仲良, 高緖珊, 奈米纖維. 2004: 五南圖書出版股份有限公司.
3. Chen, I.-T., The Study of Melting Electrospun Fibrous Membrane for Air Filtration. 2016.
4. Gibson, P., H. Schreuder-Gibson, and D. Rivin, Transport properties of porous membranes based on electrospun nanofibers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001. 187–188: p. 469-481.
5. Su, Xiaofang., Ren, Jun., Meng, Xianwei., Ren, Xiangling., Tang, Fangqiong., A novel platform for enhanced biosensing based on the synergy effects of electrospun polymer nanofibers and graphene oxides. Analyst, 2013. 138(5): p. 1459-1466.
6. Guo, Jie., Zhang, Qing., Cai, Zhijiang., Zhao, Kongyin., Preparation and dye filtration property of electrospun polyhydroxybutyrate–calcium alginate/carbon nanotubes composite nanofibrous filtration membrane. Separation and Purification Technology, 2016. 161: p. 69-79.
7. Chen, Jung-Yao., Kuo, Chi-Ching., Lai, Chia-Sheng., Chen, Wen-Chang., Chen, Hsin-Lung., Manipulation on the Morphology and Electrical Properties of Aligned Electrospun Nanofibers of Poly(3-hexylthiophene) for Field-Effect Transistor Applications. Macromolecules, 2011. 44(8): p. 2883-2892.
8. Jose, Moncy V., Marx, Sharon., Murata, Hironobu., Koepsel, Richard R., Russell, Alan J., Direct electron transfer in a mediator-free glucose oxidase-based carbon nanotube-coated biosensor. Carbon, 2012. 50(11): p. 4010-4020.
9. Jensen, M.B., DTU: Elektrospinning skal indpakke vitaminer i nanostrukturer. 2010.
10. Dayal, Pratyush., Liu, Jing., Kumar, Satish., Kyu, Thein., Experimental and Theoretical Investigations of Porous Structure Formation in Electrospun Fibers. Macromolecules, 2007. 40(21): p. 7689-7694.
11. Bognitzki, M., Czado, W., Frese, T., Schaper, A., Hellwig, M., Steinhart, M., Greiner, A., Wendorff, J. H.., Nanostructured Fibers via Electrospinning. Advanced Materials, 2001. 13(1): p. 70-72.
12. Yoon, Young Il., Moon, Hyun Sik., Lyoo, Won Seok., Lee, Taek Seung., Park, Won Ho., Superhydrophobicity of cellulose triacetate fibrous mats produced by electrospinning and plasma treatment. Carbohydrate Polymers, 2009. 75(2): p. 246-250.
13. Li, Yi., Lim, Chwee Teck., Kotaki, Masaya, Study on structural and mechanical properties of porous PLA nanofibers electrospun by channel-based electrospinning system. Polymer, 2015. 56: p. 572-580.
14. Nayani, Karthik., Katepalli, Hari., Sharma, Chandra S., Sharma, Ashutosh., Patil, Sandip., Venkataraghavan, R.., Electrospinning Combined with Nonsolvent-Induced Phase Separation To Fabricate Highly Porous and Hollow Submicrometer Polymer Fibers. Industrial & Engineering Chemistry Research, 2012. 51(4): p. 1761-1766.
15. 李科諒, 郭壽儀, 黃靖瑀, 何宗漢, 鄭錫勳, 吳宇明, 顏禎志., 自廢偏光板回收三醋酸纖維素 (TAC) 之水解研究. 工程科技與教育學刊, 2011. 8(3): p. 428-442.
16. 吳昌謀, 光學膜之開發與應用. 逢甲大學纖維與複合材料系.
17. Mohanty, A., M. Misra, and L. Drzal, Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world. Journal of Polymers and the Environment, 2002. 10(1-2): p. 19-26.
18. Heo, I., Compensation and TAC/Acryl film for polarizer. IHS Electronics & Media, 2013.
19. 李中光,劉新校,邱惠敏, 重金屬廢水處理技術之進展. 環保簡訊第23期, 2014.
20. 馬前, 張小龍, 國內外重金屬廢水處理新技術的研究進展. 環境工程學報, 2007. 1(7): p. 10-14.
21. Anton, Formhals., Process and apparatus for preparing artificial threads. 1934, Google Patents.
22. Wang, Chi., Chien, Huan-Sheng., Hsu, Chia-Hung., Wang, Yin-Chi., Wang, Cheng-Ting., Lu, Hsin-An., Electrospinning of Polyacrylonitrile Solutions at Elevated Temperatures. Macromolecules, 2007. 40(22): p. 7973-7983.
23. 陳廷彰, 奈米材料修飾電紡聚乙烯醇/葡萄糖氧化酵素複合奈米纖維薄膜於拋棄式葡萄糖感測試紙應用. 逢甲大學纖維與複合材料學系學位論文, 2015: p. 1-79.
24. Yu, Hsiu-An., Electrospun Poly (vinyl alcohol) Beaded Nanofibrous Membranes for Disposable Glucose Biosensor Application. 2015.
25. Zhao, Jingxin., Liu, Bao., Xu, Shan., Yang, Juan., Lu, Yun., Fabrication and electrochemical properties of porous VN hollow nanofibers. Journal of Alloys and Compounds, 2015. 651: p. 785-792.
26. Halaui, R., Moldavsky, A., Cohen, Y., Semiat, R., Zussman, E.., Development of micro-scale hollow fiber ultrafiltration membranes. Journal of Membrane Science, 2011. 379(1–2): p. 370-377.
27. Casper, Cheryl L., Stephens, Jean S., Tassi, Nancy G., Chase, D. Bruce., Rabolt, John F., Controlling Surface Morphology of Electrospun Polystyrene Fibers:  Effect of Humidity and Molecular Weight in the Electrospinning Process. Macromolecules, 2004. 37(2): p. 573-578.
28. Pai, Chia-Ling., Boyce, Mary C., Rutledge, Gregory C., Morphology of Porous and Wrinkled Fibers of Polystyrene Electrospun from Dimethylformamide. Macromolecules, 2009. 42(6): p. 2102-2114.
29. Han, Seong Ok., Son, Won Keun., Youk, Ji Ho., Lee, Taek Seung., Park, Won Ho., Ultrafine porous fibers electrospun from cellulose triacetate. Materials Letters, 2005. 59(24–25): p. 2998-3001.
30. McCann, Jesse T., Marquez, Manuel., Xia, Younan, Highly Porous Fibers by Electrospinning into a Cryogenic Liquid. Journal of the American Chemical Society, 2006. 128(5): p. 1436-1437.
31. 王華, 何玉鳳, 何文娟, 王燕, 王榮民, 纖維素的改性及在廢水處理中的應用研究進展 [J]. 水處理技術, 2012. 38(5): p. 1-6.
32. Srivastava, N., A.K. Thakur, and V.K. Shahi, Phosphorylated cellulose triacetate–silica composite adsorbent for recovery of heavy metal ion. Carbohydrate Polymers, 2016. 136: p. 1315-1322.
33. Wang, Ying-ting., 多孔性吸附介質的合成及其對重金屬吸附之研究. 2009.
34. 劉紹忠, 電化學法處理重金屬廢水的應用研究. 工業水處理, 2010. 30(2): p. 86-88.
35. Šćiban, Marina., Radetić, Bogdanka., Kevrešan, Žarko., Klašnja, Mile., Adsorption of heavy metals from electroplating wastewater by wood sawdust. Bioresource Technology, 2007. 98(2): p. 402-409.
36. 雷兆武, 孫穎, 離子交換技術在重金屬廢水處理中的應用. 環境科學與管理, 2008(10).
37. 雷曉東, 熊蓉春, 魏剛, 膜分離法污水處理技術. 工業水處理, 2002. 22(2): p. 1-3.
38. 程樹培, 崔益斌, 高絮凝性微生物育種生物技術研究與應用進展. 環境科學進展, 1995. 3(1): p. 65-69.
39. 韋朝陽 and 陳同斌, 重金屬污染植物修復技術的研究與應用現狀. 地球科學進展, 2002. 17(6): p. 833-839.
40. 秦智皇, 應用陽極剝除伏安法量測土壤中重金屬銅濃度. 2007.
41. Promphet, Nadtinan., Rattanarat, Poomrat., Rangkupan, Ratthapol., Chailapakul, Orawon., Rodthongkum, Nadnudda., An electrochemical sensor based on graphene/polyaniline/polystyrene nanoporous fibers modified electrode for simultaneous determination of lead and cadmium. Sensors and Actuators B: Chemical, 2015. 207: p. 526-534.
42. Tewari, Pankaj Kumar., Singh, Ajai Kumar, Synthesis, characterization and applications of pyrocatechol modified amberlite XAD-2 resin for preconcentration and determination of metal ions in water samples by flame atomic absorption spectrometry (FAAS). Talanta, 2001. 53(4): p. 823-833.
43. Qing, Yongchao., Hang, Yiping., Wanjaul, Ruth., Jiang, Zucheng., Hu, Bin., Adsorption behavior of noble metal ions (Au, Ag, Pd) on nanometer-size titanium dioxide with ICP-AES. Analytical sciences, 2003. 19(10): p. 1417-1420.
44. 王玉琦, 孫景信, 中子活化法研究稀土礦區植物體中稀土元素的分布特徵. 中國稀土學報, 1997. 15(2): p. 160-164.
45. Yi, Bo., Rajagopalan, Ramakrishnan., Foley, Henry C., Kim, Un Jeong., Liu, Xiaoming., Eklund, Peter C., Catalytic polymerization and facile grafting of poly (furfuryl alcohol) to single-wall carbon nanotube: preparation of nanocomposite carbon. Journal of the American Chemical Society, 2006. 128(34): p. 11307-11313.
46. 王小芬, 改性纖維素吸附劑的合成及其吸附重金屬離子的應用研究. 2014, 萬方數據資源系统.
47. 王穎俊, 高長有, 溶劑揮發性對 PLGA 電纺纖維直徑及其膜動態力學性能的影響.
48. Çavuş, Selva., Yaşar, Gülşah., Kaya, Yasemin., Gönder, Z. Beril., Gürdağ, Gülten., Vergili, İlda., Synthesis and characterization of gel beads based on ethyleneglycol dimethacrylate and 2-acrylamido-2-methyl-1-propane sulfonic acid: Removal of Fe(II), Cu(II), Zn(II), and Ni(II) from metal finishing wastewater. Process Safety and Environmental Protection, 2016. 103, Part A: p. 227-236.

無法下載圖示 全文公開日期 2022/02/14 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE