簡易檢索 / 詳目顯示

研究生: 陳姿伶
Tz-Ling Chen
論文名稱: 預鍍銀層於2205-LSM高溫電性之作用
Effect of Ag-precoating on the Electrical Conductivity of 2205-LSM at High Temperature
指導教授: 王朝正
Chaur-Jeng Wang
口試委員: 周振嘉
Chen-Chia Chou
李志偉
Jyh-Wei Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 107
中文關鍵詞: 固態氧化物燃料電池金屬雙極板高溫氧化ASR
外文關鍵詞: 2205 duplex stainless steel, Solid oxide fuel cell, Metallic Interconnects, High-temperature oxidation, area specific resistance
相關次數: 點閱:218下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究以2205雙相不銹鋼(2205DSS)為底材,並披覆La0.7Sr0.3 MnO3 (2205-LSM),以及在披覆La0.7Sr0.3 MnO3之前,於底材表面預先分別濺鍍2、3、4、5µm的Ag層、網印Ag層與AgPd層,再經1100°C氮氣氣氛高溫燒結後,探討2205-LSM於800°C的高溫氧化行為及Ag於高溫電性的作用。實驗結果顯示,2205-LSM於800 °C氧化1000小時後,合金底材與LSM界面形成的氧化物厚度相較於未氧化的2205-LSM之氧化層增長1.56 ± 0.05µm。但在500 ~ 750°C的ASR(Area specific resistance),卻僅增加0.16 ~ 0.003 Ωcm2,其原因是Cr-Mn spinel比例提高或二價金屬離子摻雜Cr2O3,提升了氧化層的導電性。在500 ~ 750°C的電性量測,含中間貴金屬層的2205- LSM之ASR均隨溫度提昇而下降,且其值也均低於2205-LSM的ASR,尤其在低溫的效果相較於高溫更為明顯。主要的代表是貴金屬提供較佳電子傳導路徑(Current collection)方式,增加電荷轉移效率,另為低價金屬離子摻雜氧化物與LSM層,提昇整體導電性所致。使用濺鍍方式披覆不同Ag層厚度的2205-LSM,在500°C測得的ASR均低於2205-LSM在750°C的ASR,2205 DSS/Ag/LSM用以作為金屬雙極板的材料,將可降低固態氧化物燃料電池(SOFC)操作溫度。


This researches is focus on the behavior and characteristic of oxidation for 2205-LSM at 800 °C and influence on electrical performance at high temperature for silver layer. LSM, Ag-LSM and Ag-Pd-LSM coated on 2205DSS by screen print and sputter was sintered at 1100°C under nitrogen atmosphere for 30 to 90 minutes. As the result, after oxidation at 800 °C for 1000 hours the oxide layer was form at the interface between LSM and 2205DSS. An increase on thickness of oxide layer was observed about 1.56 ± 0.05 µm but there were a small different on resistance measurements about 0.16 to 0.003 Ωcm2 as compared with un-oxidation. During long-term oxidation, formation of Cr-Mn spinel derived from reaction of Cr2O3 form 2205DSS and LSM was increased. Formation Cr-Mn spinel would reduce resistance due to its better conductivity.
On resistance measurements at temperature range of 500 to 750 °C, ASR (area specific resistance) for noble metal-LSM coated 2205DSS was decrease with increase of temperature. ASR of the specimens was less than for LSM coated 2205DSS, especially at lower temperature because of noble metal acted as a current collector to provide better pathway for conduction of electron, and low valence cation was diffused to LSM and oxide layer.
The different thickness of Silver layer was coated on 2205-LSM by sputter. According the result, ASR for Ag-LSM coated 2205DSS at 500°C was less than for LSM coated 2205DSS at 750°C. This demonstrated that metallic interconnect prepared with Ag-LSM coated 2205DSS could lower working temperature for SOFC.

摘要 I Abstract II 致謝 IV 目錄 V 圖目錄 VIII 表目錄 XIII 第1章 前言 1 第2章 文獻回顧 4 2.1 固態氧化物燃料電池介紹 4 2.1.1 固態氧化物燃料電池架構與原理 4 2.1.3 電解質 6 2.1.4 陰極 7 2.1.5 雙極板 7 2.2 金屬雙極板與其改質方式 8 2.2.1 金屬雙極板 8 2.2.2 Fe基合金金屬雙極板 10 2.2.3 金屬雙極板改質 12 2.3 貴金屬與鈣鈦礦陶瓷氧化物之電性行為研究 18 2.3.1 貴金屬 18 2.3.2 貴金屬添加於鈣鈦礦氧化物之條件 18 2.3.3 貴金屬與鈣鈦礦氧化物電荷載體傳導機制 20 2.3.4 白金、鈀、銀對鈣鈦礦氧化物電性之作用 21 2.3.4.1 白金對鈣鈦礦氧化物電性之作用 21 2.3.4.2 鈀對鈣鈦礦氧化物電性之作用 24 2.3.4.3 銀對鈣鈦礦氧化物電性之作用 27 第3章 實驗方法 32 3.1 實驗流程 32 3.2 試片製備 33 3.2.1 金屬雙極板準備及清洗 33 3.2.2 試片的名稱 34 3.3 塗覆Ag、AgPd膠和濺鍍Ag 35 3.3.1 塗覆Ag膠與Ag-Pd膠 35 3.3.2 濺鍍銀 35 3.4 LSM膠體的製作和網印 37 3.4.1 LSM粉末製備 37 3.4.2 LSM膠體製備 39 3.4.3 LSM的網印和燒結 39 3.5 高溫氧化實驗 41 3.6 高溫電阻量測 41 3.6.1 白金電極的製備 41 3.6.2 高溫電阻量測與設備 42 3.7 Cr +LSM和Cr2O3+LSM製備與燒結 45 3.7.1 純Cr片和Cr2O3的準備 45 3.7.2 Cr +LSM和Cr2O3+LSM製作 45 3.8 實驗設備 46 第4章 實驗結果與討論 48 4.1 Cr-Mn spinel (MnCr2O4)相的形成 48 4.2 2205-LSM 53 4.2.1 2205-LSM燒結 53 4.2.2 2205-LSM高溫氧化之電性 57 4.3 塗覆Ag(G)、AgPd(G)對2205-LSM之作用 62 4.3.1 2205-Ag(G)-LSM燒結與電性量測 62 4.3.2 2205-AgPd(G)-LSM燒結與電性量測 68 4.4 濺鍍不同銀層厚度對2205-LSM之作用 71 4.5 Ag塗層對2205-LSM於高溫電性的作用 86 4.6 網印Ag層以及濺鍍Ag層對金屬雙極板之效果 92 第5章結論 94 參考文獻 96 未來研究之建議 104 附錄A La0.7Sr0.3MnO3配重計算 105 附錄B 金屬雙極板之LSM與氧化層厚度值 106 作者簡介 107

1.David Goodstein,“石油浩劫:文明的未來出路在哪裡? ”,城邦文化事業股份有限公司,2004年12月。
2.Peter Tertzakian,“每秒千桶看準下一波能源大勢與世紀商機”,美商麥格羅‧希爾國際股份有限公司 台灣分公司,2006年9月。
3.浩君“石油到底出了什們問題”,海鷗文化出版圖書有限公司,2005年9月。
4.楊志忠、林頌恩、韋文誠,“燃料電池的發展現況”,科學發展,367期,pp. 30-33 (2003)。
5.溫武義,“燃料電池技術”,全華科技圖書股份有限公司,2004年8月。
6.S. de Souza, S.J. Visco, and L.C. De Jonghe, “Thin-film solid oxide fuel cell with high performance at low-temperature,” Solid State Ionics, vol. 98, pp. 57-61 (1997).
7.S. de Souza, S. J. Visco, and L. C. De Jonghe, “Reduced -temperature solid oxide fuel cell based on YSZ thin-film electrolyte”, Journal of the Electrochemical Society, vol. 144, L35 (1997).
8.M. Hirano, T. Oda, K. Ukai, and Y. Mizutani, “Effect of Bi2O3 additives in Sc stabilized zirconia electrolyte on a stability of crystal phase and electrolyte properties”, Solid State Ionics, Vol. 158, pp. 215 -223 (2003).
9.Jong-Hee Kim, Rak-Hyun Song, and Sang-Hoon Hyun, “Effect of slurry -coated LaSrMnO3 on the electrical property of Fe–Cr alloy for metallic interconnect of SOFC”, Solid State Ionics, Vol. 174, pp. 185 -191 (2004).
10.Shujiang Geng, and Jiahong Zhu, “ Promising alloys for intermediate -temperature solid oxide fuel cell interconnect application”, Journal of Power Sources, Vol. 160, pp. 1009–1016 (2006).
11.Zhenguo Yang, Guanguang Xia, Prabhakar Singh, and Jeffry W. Stevenson, “Electrical contacts between cathodes and metallic inter- connects in solid oxide fuel cells”, Journal of Power Sources, Vol. 155, pp. 246-252 (2006).
12.Hibiki Itoh, Masashi Mori, Noriyuki Mori, and Toshio Abe, “Production cost estimation of solid oxide fuel cells”, Journal of Power Sources, Vol.49, pp. 315-332 (1994).
13.S. McIntosh, and R. J. Gorte, “Direct Hydrocarbon Solid Oxide Fuel Cells”, Chem. Rev., Vol. 104, pp. 4845-4865 (2004).
14.衣寶廉,“燃料電池原理與應用”,五南圖書出版有限公司,2005年3月。
15.T. Hibino, K. Ushiki, and Y. Kuwahara, “New concept for simplifying SOFC system”, Solid State Ionics, Vol. 91 pp. 69-74 (1996).
16.D. Simwonis, F. Tietz, and D. Stöver, “Nickel coarsening in annealed Ni/8YSZ anode substrates for solid oxide fuel cells”, Solid State Ionics, Vol. 132, pp. 241-251 (2000).
17.E.C. Subbarao, and H. S. Maiti, “Solid Electrolytes with oxygen ion conduction”, Solid state Ionics, Vol. 11, pp. 317-338 (1984).
18.D.J. Garvie, R. H. J. Hannink, and M. V. Swain, “Transformation Toughening of Ceramics”, CRC Press, Inc., pp. 41 (1989).
19.Y. J. Leng, S. H. Chan, S. P. Jiang, and K. A. Khor, “Low-temp -erature SOFC with thin film GDC electrolyte prepared in situ by solid-state reaction”, Solid State Ionics, Vol. 170, pp. 9-15 (2004).
20.T. Ishihara, H. Matsuda, and Y. Takita, “Doped LaGaO3 perovskite type oxide as a new oxide ionic conductor”, Journal of the American Chemical Society, vol. 116, pp. 3801-3803 (1994).
21.Stuart B. Adler, “Factors Governing Oxygen Reduction in Solid Oxide Fuel Cell Cathodes”, Chem. Rev., Vol. 104, pp. 47914843. (2004).
22.V. Dusastre, and J. A. Kilner, “Optimisation of composite cathodes for intermediate temperature SOFC applications”, Solid State Ionics, Vol. 126, pp. 163-174 (1999).
23.A. Hammouche, E. Siebert, and A. Hammou, “Crystallographic, thermal and electrochemical properties of the system La1-xSrxMnO3 for high temperature solid electrolyte fuel cells”, Materials Research Bulletin, Vol. 24, pp. 367-380 (1989).
24.K. Huang, P.Y. Hou, and J.B. Goodenough, “Characterization of iron- based alloy interconnects for reduced temperature solid oxide fuel cells”, Solid State Ionics, Vol. 129, pp. 237-250 (2000).
25.Natsuko Sakai , Teruhisa Horita, Katsuhiko Yamaji, Yue Ping Xiong, Haruo Kishimoto,Manuel E. Brito, and Harumi Yokokawa,“Material transport and degradation behavior of SOFC interconnects”, Solid State Ionics, Vol. 177, pp. 1933-1939 (2006).
26.Yoshio Matsuzakiz, and Isamu Yasuda, “Dependence of SOFC Cathode Degradation by Chromium-Containing Alloy on Compositions of Electrodes and Electrolytes”, Journal of The Electrochemical Society, Vol. 148~2, pp.126-131 (2001).
27.K. Hilpert, D. Dos, M. Miller, D. H. Peck, and R. Weiss, “Chromium Vapor Species over Solid Oxide Fuel Cell Interconnect Materials and Their Potential for Degradation Processes”, J Electrochem. Soc., Vol. 143, No.11, pp. 3642-3647 (1996).
28. S.J. Geng, and J.H. Zhu, Z.G. Lu, “Evaluation of Haynes 242 alloy as SOFC interconnect material”, Solid State Ionics, Vol. 177, pp. 559- 568 (2006).
29.Minfang Hana, Suping Peng, Zhongli Wang, Zhibin Yang , and Xin Chena,“Properties of Fe-Cr based alloys as interconnects in a solid oxide fuel cell”, Journal of Power Sources, Vol. 164, pp. 278-283 (2007).
30.P. Kofstad, and R. Bredesen, “High temperature corrosion in SOFC environments”, Solid State Ionics, Vol. 52, pp. 69-75 (1992).
31.Z.G. Yang, K.S. Weil, D.M. Paxton, and J.W. Stevenson, “Selection and Evaluation of Heat-Resistant Alloys for SOFC Interconnect Applications”, J. Electrochem. Soc., Vol. 150, pp. 1188-1201 (2003).
32.Zhenguo Yang, Matthew S. Walker, Prabhakar Singh, Jeffry W. Stevenson, and Truls Norby, “Oxidation Behavior of Ferritic Stain- less Steels under SOFC Interconnect Exposure Conditions”, Journal of The Electrochemical Society, Vol. 151, pp. 669-678 (2004).
33.Zhenguo Yang, John S. Hardy, Matt S. Walker, Guanguang Xia, Steven P. Simner, and Jeffry W. Stevenson, “Structure and Con- ductivity of Thermally Grown Scales on Ferritic Fe-Cr-Mn Steel for SOFC Interconnect Applications”, Journal of The Electrochemical Society, Vol. 151, pp.1825-1831(2004).
34.C. Wagner, in: “Diffusion and High Temperature Oxidation of Metals in Atom Movements”, American Society of Metals, Cleveland (1951).
35.K. Huang, P.Y. Hou, and J.B. Goodenough, “Reduced area specific resistance for iron-based metallic interconnects by surface oxide coatings ” , Materials Research Bulletin, Vol. 36, pp. 81-95 (2001).
36.F. Riffard, H. Buscail, E. Caudron, R. Cueff, C. Issartel, and S. Perrier, “Effect of yttrium addition by sol-gel coating and ion implantation on the high temperature oxidation behaviour of the 304 steel”, Applied Surface Science, Vol. 199, pp. 107-122 (2002).
37.F. Riffard, H. Buscail, E. Caudron, R. Cueff, C. Issartel, and S. Perrier, “In-situ characterization of the oxide scale formed on yttrium-coated 304 stainless steel at 1000oC”, Materials Characterization, Vol. 49, pp.55-65 (2002).
38.U. v. d. Crone, M. Hänsel, W. J. Quadakkers, and R. Vaßen, “Oxidation behavior of mechanically alloyed chromium based alloys”, Fresenius J. Anal Chem., Vol. 358, pp. 230-232 (1997).
39.Wei Qu , Li Jian , Douglas G. Ivey , and Josephine M. Hill, “Yttrium, cobalt and yttrium/cobalt oxide coatings on ferritic stainless steels for SOFC interconnects”, Journal of Power Sources, Vol. 157, pp. 335 -350 (2006).
40.Zhenguo Yang, Guan-Guang Xia, Xiao-Hong Li, and Jeffry W. Stevenson, “(Mn,Co)3O4 spinel coatings on ferritic stainless steels for SOFC interconnect applications”, International Journal of Hydrogen Energy, Available online 12 October 2006.
41.Zigui Lu, and Jiahong Zhu, “Electrical Conductivity of the Manganese Chromite Spinel Solid Solution”, J. Am. Ceram. Soc., Vol. 88, pp. 1050-1053 (2005).
42.Zhenguo Yang, Guanguang Xia, Steve P. Simner, and Jeffry W. Stevenson, “Thermal Growth and Performance of Manganese Cobaltite Spinel Protection Layers on Ferritic Stainless Steel SOFC Interconnects”, Journal of The Electrochemical Society, Vol. 152, pp. 1896-1901 (2005).
43.P.Y. Hou, K. Haung, and W.T. Bakker, in: S.C. Singhal, M. Dokiya (Eds.), Proceedings of 6th International Symposium on Solid Oxide FuelCells, vol. 99-19, pp. 737 (1999).
44.H. W. Nie, T.-L. Wen, and H. Y. Tu., “Protection coatings for planar solid oxide fuel cell interconnect prepared by plasma spraying ”, Materials Research Bulletin, Vol. 38, pp. 1531-1536 (2003).
45.Yuansong Wang , Shaorong Wang, Zhenrong Wang, Tinglian Wen, and Zhaoyin Wen, “Performance of Ba0.5Sr0.5Co0.8Fe0.2O3−δ-CGO-Ag cathode for IT-SOFCs”, Journal of Alloys and Compounds, Vol. 428 pp. 286-289 (2007).
46.S.P. Simner, J.F. Bonnett, N.L. Canfield, K.D. Meinhardt, J.P. Shelton, V.L. Sprenkle, and J.W. Stevenson,“Development of lanthanum ferrite SOFC cathodes”, Journal of Power Sources, Vol. 113 pp. 1-10 (2003).
47.K. Sasaki, J. Tamura, and M. Dokiya, “Pt-cermet cathode for reduced temperature SOFCs”, Solid State Ionics, Vol. 144, pp. 233-240 (2001).
48.V.A.C. Haanappel, D. Rutenbeck, A. Mai, S. Uhlenbruck, D. Sebold, H. Wesemeyer, B. Rowekamp, C. Tropartz, and F. Tietz, “The influence of noble-metal-containing cathodes on the electrochemical per- formance of anode-supported SOFCs”, Journal of Power Sources, Vol. 130, pp. 119-128 (2004).
49.Hiroyuki Uchida, Manabu Yoshida, and Masahiro Watanabe, “Effect of Ionic Conductivity of Zirconia Electrolytes on the Polarization Behavior of Various Cathodes in Solid Fuel Cells”, Journal of The Electrochemical Society, Vol. 146, pp. 1-7 (1999).
50.Steven P. Simner , Michael D. Anderson, James E. Coleman, and Jeffry W. Stevenson, “Performance of a novel La(Sr)Fe(Co)O3–Ag SOFC cathod Journal of Power Sources”, Vol. 161, pp. 115-122 (2006).
51.吳姿慧,以共濺鍍法制備固態氧化物燃料電池之鎳-氧化鋯陽極薄膜研究,國立台灣科技大學材料所碩士論文,民國95年。
52.H. Uchida, S. Arisaka, and M. Watanabe, “High performance electrodes for medium-temperature solid oxide fuel cells: Activation of La(Sr)CoO3 cathode with highly dispersed Pt metal electrocatalysts ” , Solid State Ionics, Vol. 135, pp. 347-351 (2000).
53.S.P. Simner, J.W. Stevenson, K.D. Meinhardt, and N.L. Canfield, in: “Solid oxide fuel cells VII, H. Yokokawa, S.C. Singhal (Eds.)”, The Electrochemical Society Proceedings Series,Pennington, NJ, 2001,PV 2001-16, p. 1051.
54.Shizhong Wang, and Hao Zhong, “High performance Pd promoted Sm0.5Sr0.5CoO3–La0.8Sr0.2Ga0.8Mg0.15Co0.05O3−δ composite cathodes for intermediate temperature solid oxide fuel cells”, Journal of Power Sources, Vol. 165, pp. 58-64 (2007).
55.M. Sahibzada, S.J. Benson, R.A. Rudkin, and J.A. Kilner, “Pd-promoted La0.6Sr0.4Co0.2Fe0.8O3 cathodes”, Solid State Ionics, Vol. 113-115, pp. 285-290 (1998).
56.Changrong Xia, Yuelan Zhang, and Meilin Liu, “Composite cathode based on yttria stabilized bismuth oxide for low-temperature solid oxide fuel cells”, Applied Physics Letters, Vol. 82, pp.901-903 (2003).
57.Shaorong Wang, Tohru Kato, Susumu Nagata, Takeo Honda, Toshimi Kaneko, Nobuharu Iwashita, and Masayuki Dokiya, “Performance of a La0.6Sr0.4Co0.8Fe0.2O3-Ce0.8Gd0.2O1.9-Ag cathode for ceria electrolyte SOFCs”, Solid State Ionics, Vol.146, pp. 203 - 210 (2002).
58.L.S. Wang, and S.A. Barnett, “Ag-Perovskite Cermets for Thin-Film Solid Oxide Fuel-Cell Air-Electrode Applications”, Solid State Ionics , Vol. 76, pp. 103-113 (1995).
59.Jidong Zhang, Yuan Ji, Hongbo Gao, Tianmin He, and Jiang Liu, “Composite cathode La0.6Sr0.4Co0.2Fe0.8O3-Sm0.1Ce0.9O1.95- Ag for intermediate-temperature solid oxide fuel cells”, Journal of Alloys and Compounds, Vol. 395, pp. 322-325 (2005).
60.L.S. Wang, and S.A. Barnett, “Deposition, Structure, and Properties of Cermet Thin Films Composed of Ag and Y-Stabilized Zirconia”, J. Electrochem. Sot., Vol. 139, pp. 1134-1140 (1992).
61.Gordon R. Holcomb, and David E. Alman,“The effect of manganese additions on the reactive evaporation of chromium in Ni–Cr alloys”, Scripta Materialia, Vol. 54, pp. 1821-1825 (2006).
62.呂駿嶸,固態氧化物燃料電池金屬雙極板之高溫氧化及電性研究,國立台灣科技大學機械研究所碩士學位論文,民國95年7月。
63.甘世暄,以鑭鐠鍶鈷鐵氧化物作為固態氧化物燃料電池陰極之研究,國立台灣科技大學機械研究所碩士學位論文,民國96年7月。

QR CODE