簡易檢索 / 詳目顯示

研究生: 林敬智
Jing-jhih Lin
論文名稱: 使用超音波加工於塑膠材料上成型方孔之研究
Using Ultrasonic Machining on Plastic Materials to Create Square Holes
指導教授: 李維楨
Wei-chen Lee
口試委員: 黃育熙
Yu-hsi Huang
鍾俊輝
Chun-hui Chung
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 68
中文關鍵詞: 塑膠有限元素分析超音波加工田口方法
外文關鍵詞: Taguchi’s methods, finite element analysis, ultrasonic machining, plastic
相關次數: 點閱:263下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

於高品質的塑膠產品上進行後處理加工已是目前製造業的趨勢。由於傳統加工法不易在塑膠材料上加工非圓形特徵如四個角均為直角的方孔,而塑膠為不導電材質,無法使用線切割和放電加工等非傳統加工方式進行加工。因此本論文之目的為研究使用超音波加工技術在塑膠材料上製作方孔,我們是以壓克力材料做為研究對象。加工機台係自行組裝之單軸超音波加工機,主要是由超音波主軸、單軸線性運動平台、磨料供應系統和力量量測系統所組成。本研究並自行設計與製造超音波刀具,因為刀具幾何及質量都會影響系統的共振頻率,所以在設計階段我們使用有限元素分析軟體作為輔助工具。為了提升加工壓克力之效率,我們使用田口方法來進行實驗以決定加工時的最佳製程條件,控制因子分別為磨料種類、進給率、刀具材質及刀頭設計,實驗結果為面積擴大比,即我們希望加工出方孔的面積和由刀具截面積及磨料大小所計算出來的面積越接近越好。使用變異數去分析實驗結果顯示四個控制因子皆為影響面積擴大比的顯著因子,其中磨料種類有最大之貢獻度約76 %,刀具材質貢獻度最小約2 %,其餘二因子之貢獻度在7-8 %間。將實驗結果轉為信號雜訊比,然後再進行變異數分析,可知降低實驗結果變異的最佳因子組合為:磨料種類為氧化鋁、進給率為0.02 mm/s、刀具材質為不銹鋼、以及刀頭類型為尖頭。


Post-processing on plastic products of quality has become the trend in current manufacturing. Because it is difficult to create non-circular features, such as square holes with sharp corners, on plastic materials with traditional machining, and the non-conductive plastic cannot be processed with non-traditional machining such as wire electrical discharging machining or electrical discharge machining, the objective of this research was to study the uses of ultrasonic machining on plastic materials to fabricate square holes. PMMA was selected to be the material of the plastics. The ultrasonic machine tool used in this research was a self-made one-axis ultrasonic machine, which consists of an ultrasonic spindle, a one-axis linear motion platform, a slurry supply system, and a force measurement system. Because the resonance frequency of the ultrasonic system is influenced by the geometry and the mass of the ultrasonic tool, finite element analysis software was utilized as a tool at the design stage. In order to increase the efficiency of processing PMMA, Taguchi’s methods were used in the experiment to determine the optimal machining conditions. Control factors are types of abrasive, feed rate, tool materials, and types of tool. Accuracy is the target of the experiment. Results from analysis of variance show that types of abrasive, feed rate, tool materials, and types of tool are significant factors. Furthermore, types of abrasive had the greatest contribution. According to the single-to-noise ratio results, we can obtain the optimal factor combination, for which abrasive is Al2O3, the feed rate is 0.02 mm/s, the tool material is stainless steel, and the tool design is pointed.

摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 IX 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 4 1.3 研究目的 6 第二章 相關原理介紹 8 2.1 超音波加工原理 8 2.1.1 機台架構 9 2.2 田口方法概論 12 2.2.1 信號雜訊比 13 2.2.2 變異數分析 14 第三章 實驗設備 16 3.1 超音波加工機的建構 16 3.1.1 超音波主軸 18 3.1.2 單軸線性運動平台 20 3.1.3 磨料供應系統 22 3.1.4 力量量測系統 23 3.2 刀具設計與加工 28 3.2.1 刀具設計 28 3.2.2 刀具之模態分析 29 3.2.3 刀頭設計 34 3.2.4 刀具加工 35 3.2.5 刀具驗證 37 第四章 實驗結果與討論 40 4.1 問題定義 40 4.2 實驗規劃 41 4.3 實驗方法 43 4.4 資料分析 44 4.4.1 信號雜訊比 44 4.4.2 變異數分析 46 4.5 確認實驗 48 4.5.1 計算估測值範圍 48 4.5.2 確認實驗 49 4.6 結果與討論 50 4.6.1 控制因子之影響 50 4.6.2 方孔之出口端崩裂 52 4.6.3 切削力之探討 54 4.6.4 方孔剖面之探討 58 第五章 結論與未來展望 62 5.1 結論 62 5.2 未來展望 62 參考文獻 63 附錄A 試驗之切削力曲線圖 65

[1] (2013). Treads - Cubify robot #6. Available: http://cubify.com/store/creation.aspx?reference=t2bTW96OoShZ
[2] (2013). iPhone5s/5c(中):iPhone 5c機身「不像樹脂」的秘密. Available: http://big5.nikkeibp.com.cn/news/mobi/68360-20131107.html
[3] G. E. Miller, "Special theory of ultrasonic machining," Journal of Applied Physics, vol. 28, pp. 149-156, 1957.
[4] H. Takeyama and N. Iijima, "Machinability of Glassfiber Reinforced Plastics and Application of Ultrasonic Machining," CIRP Annals - Manufacturing Technology, vol. 37, pp. 93-96, 1988.
[5] H. Hocheng and C. C. Hsu, "Preliminary study of ultrasonic drilling of fiber-reinforced plastics," Journal of Materials Processing Technology, vol. 48, pp. 255-266, 1995.
[6] Q. Feng, W. L. Cong, Z. J. Pei, and C. Z. Ren, "Rotary ultrasonic machining of carbon fiber-reinforced polymer: Feasibility study," Machining Science and Technology, vol. 16, pp. 380-398, 2012.
[7] W. L. Cong, Z. J. Pei, Q. Feng, T. W. Deines, and C. Treadwell, "Rotary ultrasonic machining of CFRP: A comparison with twist drilling," Journal of Reinforced Plastics and Composites, vol. 31, pp. 313-321, 2012.
[8] W. L. Cong, Q. Feng, Z. J. Pei, T. W. Deines, and C. Treadwell, "Dry machining of carbon fiber reinforced plastic composite by rotary ultrasonic machining: Effects of machining variables," 2011, pp. 363-371.
[9] W. L. Cong, Q. Feng, Z. J. Pei, T. W. Deines, and C. Treadwell, "Rotary ultrasonic machining of carbon fiber-reinforced plastic composites: Using cutting fluid vs. cold air as coolant," Journal of Composite Materials, vol. 46, pp. 1745-1753, 2012.
[10] Z. C. Li, Y. Jiao, T. W. Deines, Z. J. Pei, and C. Treadwell, "Rotary ultrasonic machining of ceramic matrix composites: Feasibility study and designed experiments," International Journal of Machine Tools and Manufacture, vol. 45, pp. 1402-1411, 2005.
[11] F. Makhdum, L. T. Jennings, A. Roy, and V. V. Silberschmidt, "Cutting forces in ultrasonically assisted drilling of carbon fibre-reinforced plastics," Journal of Physics: Conference Series, vol. 382, 2012.
[12] R. Singh and J. S. Khamba, "Taguchi technique for modeling material removal rate in ultrasonic machining of titanium," Materials Science and Engineering A, vol. 460-461, pp. 365-369, 2007.
[13] R. Singh and J. S. Khamba, "Macromodel for ultrasonic machining of titanium and its alloys: Designed experiments," Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 221, pp. 221-229, 2007.
[14] K. H. W. Seah, Y. S. Wong, and L. C. Lee, "Design of tool holders for ultrasonic machining using FEM," Journal of Materials Processing Technology, vol. 37, pp. 801-816, 2// 1993.
[15] 島川正憲著, 賴耿陽譯, 超音波工學理論實務. 復漢出版社, 2001.
[16] P. J. Ross, Taguchi techniques for quality engineering : loss function, orthogonal experiments, parameter and tolerance design, 2nd ed. New York: McGraw-Hill, 1996.
[17] 李輝煌著, 田口方法 品質設計的原理與實務, 三版修訂 ed. 臺北縣五股[鄉]: 高立, 2008.

無法下載圖示 全文公開日期 2019/07/29 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE