簡易檢索 / 詳目顯示

研究生: POPI SASNIATI
POPI SASNIATI
論文名稱: 二氧化鈰中空球室溫鐵磁特性之研究
Study of Room Temperature Ferromagnetism of Hollow CeO2 Spheres
指導教授: 陳詩芸
Shih-Yun Chen
口試委員: 郭東昊
Dong-Hau Kuo
宋振铭
Jenn-Ming Song
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 65
中文關鍵詞: 形狀效應尺寸效應表面效應磁性ζ電位氧化鈰
外文關鍵詞: Shape effect, size effect, surface effect, magnetism, zeta potential, cerium oxide
相關次數: 點閱:285下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

摘要

在本研究中,我們針對三種可能改變CeO2空心球(H-CeO2)鐵磁性強度的因素進行探討。 H-CeO2採用噴霧熱解法製備。首先, H-CeO2與不同濃度的硝酸溶液進行混合,經不同反應時間,使中空球的表面狀態形成不同程度的改變。根據SEM圖像,顆粒會被酸性溶液破壞。粒度分佈變寬。當HNO3的濃度為2.14 M並且反應為15分鐘時,磁飽和度增加至0.01emu / g,此數值是未經表面處理的中空球的十倍。
第二部分,我們利用抽氣過濾的方式H-CeO2中大於800 nm的部分進行收集。結果發現大於800nm的球體其飽和磁化強度較原始樣品高,其值為0.004 emu / g。但是,若將中空球先以HNO3進行表面處理,則尺寸效應則相反,較大顆粒的中空球其飽和磁化強度降低至0.0008 emu / g。
在最後一部分,我們將三種類型的H-CeO2進行壓碎以探討形狀效應,第一種為原始的H-CeO2,第二種為尺寸大於800nm的大尺寸中空球,第三種則先以HNO3進行表面處理。結果指出,將原始樣品及大尺寸中空球的中空形狀破壞後,其飽和磁化強度上升。但是,若中空球事先經過處理,則形狀效應會受到影響。


ABSTRACT

In this study, three possible factors which may change the strength of ferromagnetism of CeO2 hollow spheres (H-CeO2) were investigated. H-CeO2 was prepared by spray pyrolysis method. In the first, surface effect was discussed. H-CeO2 reacted with nitric acid solution at different concentration and for different time to change the surface state of spheres. According to the SEM image, the particles got damaged and destroyed by acid solution. The particle size distribution became wider. As the concentration of HNO3 was 2.14M and the reaction was 15 mins, the magnetic saturation was increased to 0.01 emu/g, which was ten times greater than the as-prepared spheres.
In the second part, with the application of filtration process, H-CeO2 was divided into two parts: original ones and the ones larger than 800 nm. It is found that the magnetic saturation was higher of large spheres. The value of large H-CeO2 was 0.004 emu/g. However, in HNO3 treated H-CeO2, the effect of size was different. The magnetic saturation of the large ones was decreased to 0.0008 emu/g.
In the last part, H-CeO2 was crushed to change the shape. The crush treatment was done on three types of samples: as-prepared H-CeO2, large H-CeO2, and the HNO3 treated H-CeO2. It is demonstrated that after crush treatment, the magnetic saturation was increased for the former two. But it was decreased for the HNO3 treated ones.

TABLE OF CONTENTS 摘要 ……………………………………………………………………………………... i ABSTRACT……………………………………………………………………………… ii ACKNOWLEDGEMENTS ……………………………………………………………. iii TABLE OF CONTENTS ………………………………………………………………. iv LIST OF TABLES ……………………………………………………………………… vi TABLE OF FIGURES …………………………………………………………………. vii CHAPTER I INTRODUCTION ………………………………………………………. 1 1.1 Research Background …………………………………………………………….. 1 1.2 Research Motivation ………………………………………………………………. 1 CHAPTER II LITERATURE REVIEW………………………………………………... 4 2.1 Dilute Magnetic Semiconductor ……………………………………………………... 4 2.1.1 Introduction to Dilute Magnetic Semiconductor…………………………… 4 2.1.2 Dilute Magnetic Semiconductor Mechanism …………………………….... 5 2.1.3 Dilute Magnetic Oxide……………………………………………………… 6 2.2 Material Properties and Research background………………………………………. 7 2.2.1 Physical Properties and Fluorite Structure…………………………………. 7 2.2.2 Crystal structure and Chemical properties of dioxide……………………… 8 2.2.3 Study on The Defect of Room Temperature Ferromagnetic Properties of Dioxide…………………………………………………………………... 9 2.3 Preparation method of Cerium Oxide………………………………………………… 17 2.4 Zeta Potential…………………………………………………………………………. 19 2.4.1 Introduction of Zeta Potential……………………………….……………… 19 2.4.2 Surface Charge…………………………………………….………………. 21 2.4.2.1 Ionization of Surface Group…………………………….……………... 21 2.4.2.2 Adsorption of charge (Ion and Ionic Surfactant) ………….…………. 21 2.4.3 Zeta Potential mechanism…………………………………………………... 22 CHAPTER III EXPERIMENTAL DETAIL …………………………………………... 25 3.1 Materials ………………………………………………………………...………….... 25 3.2 Experimental Procedures …………………………………………….………………. 25 3.2.1 Preparation of Hollow CeO2 ………………………………………………… 25 3.2.2 Synthesize Hollow CeO2 by adding various Concentration of Nitric Acid.... 26 3.2.3 Synthesize Hollow CeO2 by filtration method ……………………………... 27 3.3 Materials Characterization …………………………………………………………. 28 3.3.1 Scanning Electron Microscopy……………………………………………... 28 3.3.2 Vibrating Magnetometer Sample (VSM) …………………………………………. 28 3.3.3 Zeta Potential ………………………………………………………………………. 30 3.3.4 Dynamic light Scattering (DLS) ……………………………………………............ 32 CHAPTER IV RESULTS AND DISCUSSION ………………………………………... 34 4.1 Surface Effect ……………………………….……………………………………... 34 4.2 Size Effect …………………………………………………………………………. 43 4.2.1 As-prepared Hollow CeO2………………………………………..……………….... 43 4.2.2 Nitric Acid Treated H-CeO2………………………..…………………………. 44 4.3 Shape Effect ………………………………………………………………………... 50 4.3.1 As-prepared H-CeO2 ……………………………………………………….. 50 4.3.2 H- CeO2 with large size …………………………....................................... 51 4.3.3 Hollow CeO2 Treated with Nitric Acid ………………………………….. 51 CHAPTER V CONCLUSION …………………………………………………………... 61 REFERENCE ……………………………………………………………………………. 62

REFERENCES

[1] L. Q. Zhang et al., “Influence of p-type and n-type dopants on the magnetic properties of ZnCuO based diluted magnetic semiconductor thin films,” J. Phys. D. Appl. Phys., vol. 43, no. 1, 2010, doi: 10.1088/0022-3727/43/1/015001.
[2] K. Sato and H. Katayama-Yoshida, “Stabilization of ferromagnetic states by electron doping in Fe-, Co- or Ni-doped ZnO,” Japanese J. Appl. Physics, Part 2 Lett., vol. 40, no. 4 A, pp. 1–4, 2001, doi: 10.1143/jjap.40.l334.
[3] K. Wang, Y. Chang, L. Lv, and Y. Long, “Applied Surface Science Effect of annealing temperature on oxygen vacancy concentrations of nanocrystalline CeO 2 film,” Appl. Surf. Sci., vol. 351, pp. 164–168, 2015, doi: 10.1016/j.apsusc.2015.05.122.
[4] S. Tsunekawa, J. T. Wang, Y. Kawazoe, and A. Kasuya, “Blueshifts in the ultraviolet absorption spectra of cerium oxide nanocrystallites,” J. Appl. Phys., vol. 94, no. 5, pp. 3654–3656, 2003, doi: 10.1063/1.1600520.
[5] A. Trovarelli, C. De Leitenburg, M. Boaro, and G. Dolcetti, “The utilization of ceria in industrial catalysis,” Catal. Today, vol. 50, no. 2, pp. 353–367, 1999, doi: 10.1016/S0920-5861(98)00515-X.
[6] Y. Liu, Z. Lockman, A. Aziz, and J. MacManus-Driscoll, “Size dependent ferromagnetism in cerium oxide (CeO2) nanostructures independent of oxygen vacancies,” J. Phys. Condens. Matter, vol. 20, no. 16, 2008, doi: 10.1088/0953-8984/20/16/165201.
[7] M. A. Aegerter, E. R. La Serra, A. C. Martins Rodrigues, G. Kordas, and G. A. Moore, “Characterization of sol-gel thin films of TiO 2 -PbO, TiO 2 -Bi 2 O 3 and TiO 2 -CeO 2 compositions,” Sol-Gel Opt., vol. 1328, no. November 1990, p. 391, 1990, doi: 10.1117/12.22577.
[8] S. Wang et al., “Porous ceria hollow microspheres: Synthesis and characterization,” Microporous Mesoporous Mater., vol. 123, no. 1–3, pp. 349–353, 2009, doi: 10.1016/j.micromeso.2009.04.020.
[9] J. H. Schattka, D. G. Shchukin, J. Jia, M. Antonietti, and R. A. Caruso, “Photocatalytic activities of porous titania and titania/zirconia structures formed by using a polymer gel templating technique,” Chem. Mater., vol. 14, no. 12, pp. 5103–5108, 2002, doi: 10.1021/cm021238k.
[10] P. M. Arnal, C. Weidenthaler, and F. Schu, “Highly Monodisperse Zirconia-Coated Silica Spheres and Zirconia / Silica Hollow Spheres with Remarkable Textural Properties,” no. 4, pp. 2733–2739, 2006, doi: 10.1021/cm052580a.
[11] C. Y. Cao, Z. M. Cui, C. Q. Chen, W. G. Song, and W. Cai, “Ceria hollow nanospheres produced by a template-free microwave-assisted hydrothermal method for heavy metal ion removal and catalysis,” J. Phys. Chem. C, vol. 114, no. 21, pp. 9865–9870, 2010, doi: 10.1021/jp101553x.
[12] C. Laberty-Robert et al., “Sol-gel-derived ceria nanoarchitectures: Synthesis, characterization, and electrical properties,” Chem. Mater., vol. 18, no. 1, pp. 50–58, 2006, doi: 10.1021/cm051385t.
[13] M. Hirano, Y. Fukuda, H. Iwata, Y. Hotta, and M. Inagaki, “Cerium ( IV ) Oxide Nanoparticles by Thermal Hydrolysis,” vol. 89, no. 3, pp. 1287–1289, 2000.
[14] S. Y. Chen, E. Tseng, Y. T. Lai, W. Lee, and A. Gloter, “Interface interactions and enhanced room temperature ferromagnetism of Ag@CeO2 nanostructures,” Nanoscale, vol. 9, no. 30, pp. 10764–10772, 2017, doi: 10.1039/c7nr01890h.
[15] A. C. Experimental et al., “Lattice Parameter Changes in the Mixed-oxide System,” vol. 3, no. 10, pp. 1007–1013, 1993.
[16] A. Tiwari et al., “Ferromagnetism in Co doped CeO 2: Observation of a giant magnetic moment with a high Curie temperature,” Appl. Phys. Lett., vol. 88, no. 14, pp. 2004–2007, 2006, doi: 10.1063/1.2193431.
[17] X. Han, J. Lee, and H. Yoo, “Oxygen-vacancy-induced ferromagnetism in CeO 2 from first principles,” pp. 2–5, 2009, doi: 10.1103/PhysRevB.79.100403.
[18] N. V Skorodumova, S. I. Simak, B. I. Lundqvist, I. A. Abrikosov, and B. Johansson, “Quantum Origin of the Oxygen Storage Capability of Ceria,” pp. 14–17, 2002, doi: 10.1103/PhysRevLett.89.166601.
[19] W. Lee et al., “Defect Structure Guided Room Temperature Ferromagnetism of Y-Doped CeO2 Nanoparticles,” J. Phys. Chem. C, vol. 118, no. 45, pp. 26359–26367, 2014, doi: 10.1021/jp507694d.
[20] N. Zheng, “Introduction to Dilute Magnetic Semiconductors,” Univ. Tennessee, Knoxv., no. 001, pp. 1–7, 2008, doi: 10.1007/s10008-006-0244-6.
[21] K. C. Ku et al., “Highly enhanced Curie temperature in low-temperature annealed [Ga,Mn]As epilayers,” Appl. Phys. Lett., vol. 82, no. 14, pp. 2302–2304, 2003, doi: 10.1063/1.1564285.
[22] V. M., F. C.B., and C. J.M.D., “Unexpected magnetism in a dielectric oxide,” Nature, vol. 430, no. August, p. 174117, 2004.
[23] S. Phoka, P. Laokul, E. Swatsitang, V. Promarak, S. Seraphin, and S. Maensiri, “Synthesis, structural and optical properties of CeO2 nanoparticles synthesized by a simple polyvinyl pyrrolidone (PVP) solution route,” Mater. Chem. Phys., vol. 115, no. 1, pp. 423–428, 2009, doi: 10.1016/j.matchemphys.2008.12.031.
[24] S. L. Swartz, “Catalysis by Ceria and Related Materials Edited by Alessandro Trovarelli (Università di Udine, Italy). Catalytic Science Series. Volume 2. Series Edited by Graham J. Hutchings. Imperial College Press: London. 2002. vviii + 508 pp. $78.00. ISBN: 1-86094-299-7.,” J. Am. Chem. Soc., vol. 124, no. 43, pp. 12923–12924, 2002, doi: 10.1021/ja025256e.
[25] H. Y. Li et al., “Multiple configurations of the two excess 4f electrons on defective CeO2 (111): Origin and implications,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 79, no. 19, pp. 2–5, 2009, doi: 10.1103/PhysRevB.79.193401.
[26] K. S. Ranjith et al., “Enhanced room-temperature ferromagnetism on Co-doped CeO2 nanoparticles: Mechanism and electronic and optical properties,” J. Phys. Chem. C, vol. 118, no. 46, pp. 27039–27047, 2014, doi: 10.1021/jp505175t.
[27] S. Y. Chen et al., “Enhancement of ferromagnetism in CeO2 nanoparticles by nonmagnetic Cr3+ doping,” J. Phys. Chem. C, vol. 116, no. 50, pp. 26570–26576, 2012, doi: 10.1021/jp3066376.
[28] S. Y. Chen et al., “Concentration dependence of oxygen vacancy on the magnetism of CeO 2 nanoparticles,” J. Phys. Chem. C, vol. 116, no. 15, pp. 8707–8713, 2012, doi: 10.1021/jp2065634.
[29] S. Phokha, E. Swatsitang, and S. Maensiri, “Room-temperature ferromagnetism in pure CeO2 nanoparticles prepared by a simple direct thermal decomposition,” Electron. Mater. Lett., vol. 11, no. 6, pp. 1012–1020, 2015, doi: 10.1007/s13391-015-4164-4.
[30] M. Li, S. Ge, W. Qiao, L. Zhang, Y. Zuo, and S. Yan, “Relationship between the surface chemical states and magnetic properties of CeO2 nanoparticles,” Appl. Phys. Lett., vol. 94, no. 15, pp. 1–4, 2009, doi: 10.1063/1.3079330.
[31] X. Chen, G. Li, Y. Su, X. Qiu, L. Li, and Z. Zou, “Synthesis and room-temperature ferromagnetism of CeO2 nanocrystals with nonmagnetic Ca2+ doping,” Nanotechnology, vol. 20, no. 11, 2009, doi: 10.1088/0957-4484/20/11/115606.
[32] E. N. Tseng, Y. T. Hsiao, Y. C. Chen, S. Y. Chen, A. Gloter, and J. M. Song, “Magnetism and plasmonic performance of mesoscopic hollow ceria spheres decorated with silver nanoparticles,” Nanoscale, vol. 11, no. 8, pp. 3574–3582, 2019, doi: 10.1039/c8nr09636h.
[33] N. Paunović et al., “Suppression of inherent ferromagnetism in Pr-doped CeO2 nanocrystals,” Nanoscale, vol. 4, no. 17, pp. 5469–5476, 2012, doi: 10.1039/c2nr30799e.
[34] T. Minami, T. Miyata, and T. Yamamoto, “Work function of transparent conducting multicomponent oxide thin films prepared by magnetron sputtering,” vol. 109, pp. 583–587, 1998.
[35] L. Wu et al., “Oxidation state and lattice expansion of CeO2-x nanoparticles as a function of particle size,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 69, no. 12, pp. 1–9, 2004, doi: 10.1103/PhysRevB.69.125415.
[36] W. C. Tsai and T. Y. Tseng, “Structural and electrical properties of cerium dioxide films grown by RF magnetron sputtering,” J. Mater. Sci. Mater. Electron., vol. 8, no. 5, pp. 313–320, 1997, doi: 10.1023/A:1018539423289.
[37] J. Liu, L. Wang, H. Wu, L. Mo, H. Lou, and X. Zheng, “Synthesis and characterization of CeO2 by the hydrothermal method assisted by carboxymethylcellulose sodium,” React. Kinet. Catal. Lett., vol. 98, no. 2, pp. 311–318, 2009, doi: 10.1007/s11144-009-0093-2.
[38] D. S. Bae, B. Lim, B. I. Kim, and K. S. Han, “Synthesis and characterization of ultrafine CeO2 particles by glycothermal process,” Mater. Lett., vol. 56, no. 4, pp. 610–613, 2002, doi: 10.1016/S0167-577X(02)00563-3.
[39] G. H. A. Therese and P. V. Kamath, “Electrochemical Synthesis of Metal Oxides and Hydroxides,” pp. 1195–1204, 2000, doi: 10.1021/cm990447a.
[40] “ElectrochemicalSynthesis.pdf.” .
[41] F. Czerwinski and J. A. Szpunar, “The Nanocrystalline Ceria Sol-Gel Coatings for High Temperature Applications,” J. Sol-Gel Sci. Technol., vol. 9, no. 1, pp. 103–114, 1997, doi: 10.1007/bf02439341.
[42] S. Y. Chen, Y. H. Lu, T. W. Huang, D. C. Yan, and C. L. Dong, “Oxygen vacancy dependent magnetism of CeO2 nanoparticles prepared by thermal decomposition method,” J. Phys. Chem. C, vol. 114, no. 46, pp. 19576–19581, 2010, doi: 10.1021/jp1045172.
[43] C. P. Synthesis and S. Pyrolysis, “Ceramic Powder Synthesis.”
[44] S. J. Shih, W. L. Tzeng, and W. L. Kuo, “Fabrication of ceria particles using glycine nitrate spray pyrolysis,” Surf. Coatings Technol., vol. 259, no. PB, pp. 302–309, 2014, doi: 10.1016/j.surfcoat.2014.04.016.
[45] M. I. Limited, “Zeta potential: An Introduction in 30 minutes,” Zetasizer Nano Serles Tech. Note. MRK654-01, vol. 2, pp. 1–6, 2011.
[46] J. Strazisar, S. Knez, and S. Kobe, “The influence of the magnetic field on the zeta potential of precipitated calcium carbonate,” Part. Part. Syst. Charact., vol. 18, no. 5–6, pp. 278–285, 2002, doi: 10.1002/1521-4117(200112)18:5/6<278::AID-PPSC278>3.0.CO;2-9.
[47] I. Nurdin, M. R. Johan, I. I. Yaacob, and B. C. Ang, “Effect of nitric acid concentrations on synthesis and stability of maghemite nanoparticles suspension,” Sci. World J., vol. 2014, 2014, doi: 10.1155/2014/589479.
[48] Materials Engineering And Science An Introduction To Materials Engineering And Science For Chemical And Materials Engineers. .
[49] C. Freitas and R. H. Müller, “Effect of light and temperature on zeta potential and physical stability in solid lipid nanoparticle (SLN®) dispersions,” Int. J. Pharm., vol. 168, no. 2, pp. 221–229, 1998, doi: 10.1016/S0378-5173(98)00092-1.
[50] S. Bhattacharjee, “DLS and zeta potential - What they are and what they are not?,” J. Control. Release, vol. 235, pp. 337–351, 2016, doi: 10.1016/j.jconrel.2016.06.017.

無法下載圖示 全文公開日期 2022/01/20 (校內網路)
全文公開日期 2025/01/20 (校外網路)
全文公開日期 2025/01/20 (國家圖書館:臺灣博碩士論文系統)
QR CODE