簡易檢索 / 詳目顯示

研究生: 林潔
Chieh Lin
論文名稱: 探討電漿水對於骨細胞及骨癌細胞之影響
Effects of Plasma-Treated Water on Osteogenic cells and Osteosarcomas
指導教授: 何明樺
Ming-Hua Ho
口試委員: 張煜光
Yu-Kaung Chang
郭俞麟
Yu-Lin Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 135
中文關鍵詞: 電漿水活性氧活性氮骨母細胞骨癌細胞
外文關鍵詞: Plasma treated water, Reactive oxygen species, Reactive nitrogen species, Osteogenic cells, Osteosarcomas
相關次數: 點閱:173下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,電漿水在生物醫學領域逐漸受到重視,特別是在癌症治療方面。電漿水作為一間接治療方法,主要是透過生成活性氧及活性氮物質 (Reactive oxygen and nitrogen species, RONS) 來對癌細胞活性產生影響。然而,直至目前為止,RONS於細胞中所產生的特殊機制仍尚未被完全釐清。
    本研究中將以去離子水置於大氣電漿中以置備出電漿水,同時藉由光譜分析儀確認電漿水中氮氣及氬氣的反應性離子之存在。此外,於電漿水置備完成後觀察到pH值之下降,此結果顯示電漿治療的效果。隨後,又進行了電漿水中長半衰期之RONS之濃度,例如硝酸鹽、亞硝酸鹽、過氧化氫以證明RONS可以保存於電漿水中至少七天的活性。
    為了評估電漿水對於骨母細胞及骨癌細胞之影響,本研究利用電漿水進行了細胞活性測試,並採取不同電漿處理時間 (6 min、10 min、14 min、18 min、20 min) 及不同電漿水添加量 (80 μL、100 μL、200 μL、300 μL、400 μL) 與細胞培養液混合。根據結果顯示,相比骨母細胞電漿水更大程度地抑制了骨癌細胞的活性,且於最佳化條件的培養下,骨母細胞維持了細胞的增殖能力,然而骨癌細胞展現了明顯的細胞凋亡。在細胞膜電位差中,骨細胞皆發生了變化,其中骨癌細胞之膜電位差在電漿水的培養後明顯產生下降,意味著細胞膜完整性的喪失。此外於細胞型態的變化中觀察到,骨癌細胞的型態由紡錘狀轉變為球型近一步證明了骨癌細胞的凋亡。
    儘管如此,電漿水並沒有影響骨母細胞之細胞活性反而提升了骨分化之表現,本研究通過細胞膜電位差之結果證明了電漿水對於骨癌細胞的細胞毒性,並對未來臨床癌症治療提供了較大的潛能。


    Recently, plasma-treated water (PTW) has garnered considerable attention in biomedical fields, particularly in cancer treatment. PTW, as an indirect treatment method, primarily affects cancer cells through the generation of reactive oxygen and nitrogen species (RONS). However, the specific mechanisms by which RONS influence cellular fate have not been clearly identified thus far.
    In our research, we prepared PTW by subjecting deionized water (DI water) to atmospheric pressure plasma. Through optical emission spectroscopy, we confirmed the presence of nitrogen and argon reactive ions in the PTW. Furthermore, we observed a decrease in the pH value, which indicated the effectiveness of the plasma treatment. Subsequently, we measured the concentration of long-lived RONS, such as nitrite, nitrate, and hydrogen peroxide, providing evidence that these RONS can persist for at least 7 days.
    To assess the impact of PTW on osteogenic cells and osteosarcomas, we conducted viability tests using PTW with varying plasma treatment times (6 min, 10 min, 14 min, 18 min, 20 min) and different volumes (80 μL, 100 μL, 200 μL, 300 μL, 400 μL) added to the culture medium. The results demonstrated that PTW suppressed osteosarcoma viability to a greater extent than that of osteogenic cells. Under optimized conditions, osteogenic cells maintained their proliferation, while osteosarcomas underwent clear apoptosis. Alterations in the membrane potential of both osteoblasts and osteosarcomas indicated a significant decrease in the membrane potential of osteosarcomas upon exposure to PTW, signifying the loss of membrane integrity. Additionally, the morphological changes observed, where spindle-shaped cells transformed into spherical cells, further supported evidence of apoptosis in osteosarcoma.
    Conversely, PTW did not impact the viability of osteoblasts and even promoted their osteogenic differentiation. This study provided evidence that PTW exhibited greater cytotoxicity towards osteosarcoma cells, which correlated with the permeability of the cell membrane. These findings offer potential clinical applications of PTW in cancer treatment.

    摘要 I Abstract II 致謝 IV 目錄 V 圖目錄 IX 表目錄 XVI 方程式目錄 XVIII 專有名詞及縮寫 XIX 第一章 緒論 1 第二章 文獻回顧 3 2.1 骨癌細胞 3 2.1.1 骨癌細胞之常見療法 3 2.1.2 骨癌細胞凋亡之機制 4 2.2 電漿技術 5 2.2.1 電漿定義與基本反應 5 2.2.2 常溫常壓電漿之介紹 7 2.3 電漿水 9 2.3.1 電漿水之生成機制 9 2.3.2 電漿水於生物醫學領域之應用 11 2.3.3 電漿水生成之活性物質對細胞的影響 14 第三章 實驗材料與方法 19 3.1 實驗藥品 19 3.2 實驗儀器 21 3.3 實驗步驟 22 3.3.1 電漿水之製備 22 3.4 材料性質之鑑定 22 3.4.1 酸鹼值測試 22 3.4.2 Griess測試 23 3.4.3 紫外光-可見光分光光譜 (UV-VIS) 分析 23 3.4.4 過氧化氫測試 24 3.4.5 氧化還原電位 24 3.5 體外細胞實驗 25 3.5.1 實驗操作 25 3.5.2 細胞來源 25 3.5.3 培養基配置 26 3.5.4 細胞培養 27 3.5.5 細胞冷凍保存 27 3.5.6 細胞解凍及培養 28 3.5.7 細胞計數 28 3.5.8 體外細胞培養 30 3.5.9 粒線體活性測試 30 3.5.10 鹼性磷酸酶測試 32 3.5.11 蛋白質濃度測定 34 3.5.12 細胞膜電位差測定 35 3.5.13 細胞骨架染色 (Cytoskeleton immunostaining) 36 第四章 實驗結果與討論 37 4.1 電漿水物理化學性質測試 37 4.1.1 不同處理時間之pH值比較 37 4.1.2 放射光譜分析儀(OES)之分析 39 4.1.3 氧化還原電位之測定 41 4.1.4 活性氧氮物質含量測定 42 4.1.5 表面張力測試 48 4.2 細胞粒線體活性測試 50 4.2.1 電漿水對骨母細胞之活性表現 50 4.2.2 電漿水對骨癌細胞之活性表現 55 4.3 電漿水對於細胞膜之影響 62 4.3.1 骨母細胞之細胞膜電位差變化 62 4.3.2 骨癌細胞之細胞膜電位差變化 66 4.4 電漿水對細胞結構之影響 71 4.4.1 電漿水對骨母細胞型態的改變 71 4.4.2 骨母細胞之肌動蛋白骨架與細胞和染色 82 4.4.3 電漿水對骨癌細胞型態的改變 94 4.4.4 骨癌細胞之肌動蛋白骨架與細胞和染色 98 4.5 電漿水培養骨母細胞之骨分化表現 100 第五章 結論 102 未來工作 104 參考文獻 105

    1. Wachtel, M. and B.W. Schafer, Targets for cancer therapy in childhood sarcomas. Cancer Treat Rev, 2010. 36: p. 318-327.
    2. Liontos, M., K. Niforou, G. Velimezi, K. Vougas, K. Evangelou, K. Apostolopoulou, R. Vrtel, A. Damalas, P. Kontovazenitis, A. Kotsinas, V. Zoumpourlis, G.T. Tsangaris, C. Kittas, D. Ginsberg, T.D. Halazonetis, J. Bartek, and V.G. Gorgoulis, Modulation of the E2F1-Driven Cancer Cell Fate by the DNA Damage Response Machinery and Potential Novel E2F1 Targets in Osteosarcomas. The American Journal of Pathology, 2009. 175: p. 376-391.
    3. Landier, W. and S. Bhatia, Cancer survivorship: a pediatric perspective. Oncologist, 2008. 13: p. 1181-1192.
    4. Wu, D. and M. Wan, Methylene diphosphonate-conjugated adriamycin liposomes: preparation, characteristics, and targeted therapy for osteosarcomas in vitro and in vivo. Biomedical Microdevices, 2012. 14: p. 497-510.
    5. Crighton, D. and K.M. Ryan, Splicing DNA-damage responses to tumour cell death. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 2004. 1705: p. 3-15.
    6. Geng, Y.J., Molecular signal transduction in vascular cell apoptosis. Cell Research, 2001. 11: p. 253-264.
    7. Pollak, N., A. Lindner, D. Imig, K. Kuritz, J.S. Fritze, L. Decker, I. Heinrich, J. Stadager, S. Eisler, D. Stöhr, F. Allgöwer, P. Scheurich, and M. Rehm, Cell cycle progression and transmitotic apoptosis resistance promote escape from extrinsic apoptosis. Journal of Cell Science, 2021. 134: p. jcs258966-jcs258980.
    8. Boutelle, A.M. and L.D. Attardi, p53 and Tumor Suppression: It Takes a Network. Trends in Cell Biology, 2021. 31: p. 298-310.
    9. Chen, F.E., lntroduction to plasma physics and controlled fusion. . 1974: New York and London. p. 1-440.
    10. Schram, D.C., Is plasma unique? The presence of electrons and the importance of charge. Plasma Sources Science and Technology, 2009. 18: p. 014003-014016.
    11. von Keudell, A. and V. Schulz-von der Gathen, Foundations of low-temperature plasma physics—an introduction. Plasma Sources Science and Technology, 2017. 26: p. 113001-113017.
    12. Nehra, V., A. Kumar, and H.K. Dwivedi, Atmospheric Non-Thermal Plasma Sources. International Journal of Engineering, 2008. 2: p. 53-68.
    13. Selwyn, G.S., H.W. Herrmann, J. Park, and I. Henins, Materials Processing Using an Atmospheric Pressure, RF-Generated Plasma Source. Contributions to Plasma Physics, 2001. 41: p. 610-619.
    14. Weltmann, K.D., M. Polak, K. Masur, T. von Woedtke, J. Winter, and S. Reuter, Plasma Processes and Plasma Sources in Medicine. Contributions to Plasma Physics, 2012. 52: p. 644-654.
    15. Brandenburg, R., Dielectric barrier discharges: progress on plasma sources and on the understanding of regimes and single filaments. Plasma Sources Science and Technology, 2017. 26: p. 053001-053031.
    16. Weltmann, K.D. and T. von Woedtke, Plasma medicine—current state of research and medical application. Plasma Physics and Controlled Fusion, 2017. 59: p. 014031-014042.
    17. Daeschlein, G., S. Scholz, R. Ahmed, T. von Woedtke, H. Haase, M. Niggemeier, E. Kindel, R. Brandenburg, K.D. Weltmann, and M. Juenger, Skin decontamination by low-temperature atmospheric pressure plasma jet and dielectric barrier discharge plasma. J Hosp Infect, 2012. 81: p. 177-183.
    18. Zhou, R., R. Zhou, K. Prasad, Z. Fang, R. Speight, K. Bazaka, and K. Ostrikov, Cold atmospheric plasma activated water as a prospective disinfectant: the crucial role of peroxynitrite. Green Chemistry, 2018. 20: p. 5276-5284.
    19. Pan, J., Y.L. Li, C.M. Liu, Y. Tian, S. Yu, K.L. Wang, J. Zhang, and J. Fang, Investigation of Cold Atmospheric Plasma-Activated Water for the Dental Unit Waterline System Contamination and Safety Evaluation in Vitro. Plasma Chemistry and Plasma Processing, 2017. 37: p. 1091-1103.
    20. Zhou, R., R. Zhou, P. Wang, Y. Xian, A. Mai-Prochnow, X. Lu, P.J. Cullen, K. Ostrikov, and K. Bazaka, Plasma-activated water: generation, origin of reactive species and biological applications. Journal of Physics D: Applied Physics, 2020. 53: p. 303001-303028.
    21. Guo, L., R. Xu, L. Gou, Z. Liu, Y. Zhao, D. Liu, L. Zhang, H. Chen, and M.G. Kong, Mechanism of Virus Inactivation by Cold Atmospheric-Pressure Plasma and Plasma-Activated Water. Applied and Environmental Microbiology, 2018. 84: p. e00726-00718-e00726-00727.
    22. Golda, J., K. Sgonina, J. Held, J. Benedikt, and V. Schulz-von der Gathen, Treating Surfaces with a Cold Atmospheric Pressure Plasma using the COST-Jet. JoVE 2020. 165: p. e61801-e61816.
    23. Schutze, A., J.Y. Jeong, S.E. Babayan, P. Jaeyoung, G.S. Selwyn, and R.F. Hicks, The atmospheric-pressure plasma jet: a review and comparison to other plasma sources. IEEE Transactions on Plasma Science, 1998. 26: p. 1685-1694.
    24. Kong, M.G., G. Kroesen, G. Morfill, T. Nosenko, T. Shimizu, J. van Dijk, and J.L. Zimmermann, Plasma medicine: an introductory review. New Journal of Physics, 2009. 11: p. 115012-115047.
    25. Graves, D.B., Low temperature plasma biomedicine: A tutorial review. Physics of Plasmas, 2014. 21: p. 080901-080912.
    26. Oh, J.-S., X. Strudwick, R.D. Short, K. Ogawa, A. Hatta, H. Furuta, N. Gaur, S.-H. Hong, A.J. Cowin, H. Fukuhara, K. Inoue, M. Ito, C. Charles, R.W. Boswell, J.W. Bradley, D.B. Graves, and E.J. Szili, How plasma induced oxidation, oxygenation, and de-oxygenation influences viability of skin cells. Applied Physics Letters, 2016. 109: p. 203701-203705.
    27. Zhong, S.Y., Y.Y. Dong, D.X. Liu, D.H. Xu, S.X. Xiao, H.L. Chen, and M.G. Kong, Surface air plasma‐induced cell death and cytokine release of human keratinocytes in the context of psoriasis. British Journal of Dermatology, 2016. 174: p. 542-552.
    28. Boxhammer, V., Y.F. Li, J. Köritzer, T. Shimizu, T. Maisch, H.M. Thomas, J. Schlegel, G.E. Morfill, and J.L. Zimmermann, Investigation of the mutagenic potential of cold atmospheric plasma at bactericidal dosages. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 2013. 753: p. 23-28.
    29. Joshi, S.G., M. Paff, G. Friedman, G. Fridman, A. Fridman, and A.D. Brooks, Control of methicillin-resistant Staphylococcus aureus in planktonic form and biofilms: A biocidal efficacy study of nonthermal dielectric-barrier discharge plasma. American Journal of Infection Control, 2010. 38: p. 293-301.
    30. Cotter, J.J., P. Maguire, F. Soberon, S. Daniels, J.P. O’Gara, and E. Casey, Disinfection of meticillin-resistant Staphylococcus aureus and Staphylococcus epidermidis biofilms using a remote non-thermal gas plasma. Journal of Hospital Infection, 2011. 78: p. 204-207.
    31. Guo, S. and L.A. DiPietro, Factors Affecting Wound Healing. Journal of Dental Research, 2010. 89: p. 219-229.
    32. Pignatelli, P., F.M. Pulcinelli, L. Lenti, P. Paolo Gazzaniga, and F. Violi, Hydrogen Peroxide Is Involved in Collagen-Induced Platelet Activation. Blood, 1998. 91: p. 484-490.
    33. Kim, M.-H., W. Liu, D.L. Borjesson, F.-R.E. Curry, L.S. Miller, A.L. Cheung, F.-T. Liu, R.R. Isseroff, and S.I. Simon, Dynamics of Neutrophil Infiltration during Cutaneous Wound Healing and Infection Using Fluorescence Imaging. Journal of Investigative Dermatology, 2008. 128: p. 1812-1820.
    34. Bekeschus, S., A. Schmidt, K.-D. Weltmann, and T. von Woedtke, The plasma jet kINPen – A powerful tool for wound healing. Clinical Plasma Medicine, 2016. 4: p. 19-28.
    35. Eming, S.A., M. Koch, A. Krieger, B. Brachvogel, S. Kreft, L. Bruckner-Tuderman, T. Krieg, J.D. Shannon, and J.W. Fox, Differential Proteomic Analysis Distinguishes Tissue Repair Biomarker Signatures in Wound Exudates Obtained from Normal Healing and Chronic Wounds. Journal of Proteome Research, 2010. 9: p. 4758-4766.
    36. Sladek, R.E.J., E. Stoffels, R. Walraven, P.J.A. Tielbeek, and R.A. Koolhoven, Plasma treatment of dental cavities: a feasibility study. IEEE Transactions on Plasma Science, 2004. 32: p. 1540-1543.
    37. Lee, H.W., G.J. Kim, J.M. Kim, J.K. Park, J.K. Lee, and G.C. Kim, Tooth Bleaching with Nonthermal Atmospheric Pressure Plasma. Journal of Endodontics, 2009. 35: p. 587-591.
    38. Miller, V., A. Lin, G. Fridman, D. Dobrynin, and A. Fridman, Plasma Stimulation of Migration of Macrophages. Plasma Processes and Polymers, 2014. 11: p. 1193-1197.
    39. Ngo, M.-H.T., J.-D. Liao, P.-L. Shao, C.-C. Weng, and C.-Y. Chang, Increased Fibroblast Cell Proliferation and Migration Using Atmospheric N2/Ar Micro-Plasma for the Stimulated Release of Fibroblast Growth Factor-7. Plasma Processes and Polymers, 2014. 11: p. 80-88.
    40. Arjunan, K.P., G. Friedman, A. Fridman, and A.M. Clyne, Non-thermal dielectric barrier discharge plasma induces angiogenesis through reactive oxygen species. Journal of The Royal Society Interface, 2012. 9: p. 147-157.
    41. Priya Arjunan, K. and A. Morss Clyne, Hydroxyl Radical and Hydrogen Peroxide are Primarily Responsible for Dielectric Barrier Discharge Plasma-Induced Angiogenesis. Plasma Processes and Polymers, 2011. 8: p. 1154-1164.
    42. Cheng, X., J. Sherman, W. Murphy, E. Ratovitski, J. Canady, and M. Keidar, The Effect of Tuning Cold Plasma Composition on Glioblastoma Cell Viability. PLOS ONE, 2014. 9: p. e98652-e98660.
    43. Chang, J.W., S.U. Kang, Y.S. Shin, K.I. Kim, S.J. Seo, S.S. Yang, J.-S. Lee, E. Moon, S.J. Baek, K. Lee, and C.-H. Kim, Non-thermal atmospheric pressure plasma induces apoptosis in oral cavity squamous cell carcinoma: Involvement of DNA-damage-triggering sub-G1 arrest via the ATM/p53 pathway. Archives of Biochemistry and Biophysics, 2014. 545: p. 133-140.
    44. Keidar, M., R. Walk, A. Shashurin, P. Srinivasan, A. Sandler, S. Dasgupta, R. Ravi, R. Guerrero-Preston, and B. Trink, Cold plasma selectivity and the possibility of a paradigm shift in cancer therapy. British Journal of Cancer, 2011. 105: p. 1295-1301.
    45. Georgescu, N. and A.R. Lupu, Tumoral and Normal Cells Treatment With High-Voltage Pulsed Cold Atmospheric Plasma Jets. IEEE Transactions on Plasma Science, 2010. 38: p. 1949-1955.
    46. Han, D., J.H. Cho, R.H. Lee, W. Bang, K. Park, M.S. Kim, J.-H. Shim, J.-I. Chae, and S.Y. Moon, Antitumorigenic effect of atmospheric-pressure dielectric barrier discharge on human colorectal cancer cells via regulation of Sp1 transcription factor. Scientific Reports, 2017. 7: p. 43081-43093.
    47. Ishaq, M., K. Bazaka, and K. Ostrikov, Pro-apoptotic NOXA is implicated in atmospheric-pressure plasma-induced melanoma cell death. Journal of Physics D: Applied Physics, 2015. 48: p. 464002-464009.
    48. Hubenak, J.R., Q. Zhang, C.D. Branch, and S.J. Kronowitz, Mechanisms of injury to normal tissue after radiotherapy: a review. Plast Reconstr Surg, 2014. 133: p. 49e-56e.
    49. Rassool, F.V. and A.E. Tomkinson, Targeting abnormal DNA double strand break repair in cancer. Cellular and Molecular Life Sciences, 2010. 67: p. 3699-3710.
    50. Gorrini, C., I.S. Harris, and T.W. Mak, Modulation of oxidative stress as an anticancer strategy. Nature Reviews Drug Discovery, 2013. 12: p. 931-947.
    51. Trachootham, D., J. Alexandre, and P. Huang, Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nature Reviews Drug Discovery, 2009. 8: p. 579-591.
    52. Hirst, A.M., F.M. Frame, M. Arya, N.J. Maitland, and D. O’Connell, Low temperature plasmas as emerging cancer therapeutics: the state of play and thoughts for the future. Tumor Biology, 2016. 37: p. 7021-7031.
    53. Szabó, C., H. Ischiropoulos, and R. Radi, Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nature Reviews Drug Discovery, 2007. 6: p. 662-680.
    54. Alvarez, B. and R. Radi, Peroxynitrite reactivity with amino acids and proteins. Amino Acids, 2003. 25: p. 295-311.
    55. Liu, Z., D. Xu, D. Liu, Q. Cui, H. Cai, Q. Li, H. Chen, and M.G. Kong, Production of simplex RNS and ROS by nanosecond pulse N2/O2plasma jets with homogeneous shielding gas for inducing myeloma cell apoptosis. Journal of Physics D: Applied Physics, 2017. 50: p. 195204-195213.
    56. Kim, S.J. and T.H. Chung, Cold atmospheric plasma jet-generated RONS and their selective effects on normal and carcinoma cells. Sci Rep, 2016. 6: p. 20332-20345.
    57. Vandamme, M., E. Robert, S. Lerondel, V. Sarron, D. Ries, S. Dozias, J. Sobilo, D. Gosset, C. Kieda, B. Legrain, J.-M. Pouvesle, and A.L. Pape, ROS implication in a new antitumor strategy based on non-thermal plasma. International Journal of Cancer, 2012. 130: p. 2185-2194.
    58. Iseki, S., K. Nakamura, M. Hayashi, H. Tanaka, H. Kondo, H. Kajiyama, H. Kano, F. Kikkawa, and M. Hori, Selective killing of ovarian cancer cells through induction of apoptosis by nonequilibrium atmospheric pressure plasma. Applied Physics Letters, 2012. 1468: p. 113702-113706.
    59. Sun, X., M. Ai, Y. Wang, S. Shen, Y. Gu, Y. Jin, Z. Zhou, Y. Long, and Q. Yu, Selective induction of tumor cell apoptosis by a novel P450-mediated reactive oxygen species (ROS) inducer methyl 3-(4-nitrophenyl) propiolate. Journal of Biological Chemistry, 2013. 288: p. 8826-8837.
    60. Subramanian, P.S.G., A. Jain, A.M. Shivapuji, N.R. Sundaresan, S. Dasappa, and L. Rao, Plasma-activated water from a dielectric barrier discharge plasma source for the selective treatment of cancer cells. Plasma Processes and Polymers, 2020. 17: p. e1900260-e1900272.
    61. Moravský, L., P. Troška, M. Klas, M. Masár, and Š. Matejčík, Determination of nitrites and nitrates in plasma-activated deionized water by microchip capillary electrophoresis. Contributions to Plasma Physics, 2020. 60: p. e202000014-e202000022.
    62. Bolouki, N., W.-H. Kuan, Y.-Y. Huang, and J.-H. Hsieh, Characterizations of a Plasma-Water System Generated by Repetitive Microsecond Pulsed Discharge with Air, Nitrogen, Oxygen, and Argon Gases Species. Applied Sciences, 2021. 11: p. 6158-6169.
    63. Zhang, Z., J. Shen, C. Cheng, Z. Xu, and W. Xia, Generation of reactive species in atmospheric pressure dielectric barrier discharge with liquid water. Plasma Science and Technology, 2018. 20: p. 044009-044015.
    64. Qiao, D., Y. Li, J. Pan, J. Zhang, Y. Tian, and K. Wang, Effect of Plasma Activated Water in Caries Prevention: The Caries Related Biofilm Inhibition Effects and Mechanisms. Plasma Chemistry and Plasma Processing, 2022. 42: p. 801-814.
    65. Xu, Y., Y. Tian, R. Ma, Q. Liu, and J. Zhang, Effect of plasma activated water on the postharvest quality of button mushrooms, Agaricus bisporus. Food Chemistry, 2016. 197: p. 436-444.
    66. Cui, D., Y. Yin, H. Sun, X. Wang, J. Zhuang, L. Wang, R. Ma, and Z. Jiao, Regulation of cellular redox homeostasis in Arabidopsis thaliana seedling by atmospheric pressure cold plasma-generated reactive oxygen/nitrogen species. Ecotoxicology and Environmental Safety, 2022. 240: p. 113703-113714.
    67. Lai, C.-C., Y.-X. Deng, and Y.-H. Liao, A study on the influence of gas mixtures on the property of plasma-activated water. Plasma Processes and Polymers, 2020. 17: p. e1900196-e1900202.
    68. Liu, Z., S. Wang, B. Pang, H. Zhang, Y. Gao, D. Xu, and M.G. Kong, The impact of surface-to-volume ratio on the plasma activated water characteristics and its anticancer effect. Journal of Physics D: Applied Physics, 2021. 54: p. 215203-215214.
    69. Vlad, I.-E. and S.D. Anghel, Time stability of water activated by different on-liquid atmospheric pressure plasmas. Journal of Electrostatics, 2017. 87: p. 284-292.
    70. Huang, L.-T., T.-F. Yeh, Y.-L. Kuo, P.-C. Chen, and C.-M. Chen, Effect of Surfactant and Budesonide on the Pulmonary Distribution of Fluorescent Dye in Mice. Pediatrics & Neonatology, 2015. 56: p. 19-24.
    71. Pang, B., Z. Liu, H. Zhang, S. Wang, Y. Gao, D. Xu, D. Liu, and M.G. Kong, Investigation of the chemical characteristics and anticancer effect of plasma-activated water: The effect of liquid temperature. Plasma Processes and Polymers, 2022. 19: p. e2100079-e2100091.
    72. Mahdikia, H., B. Shokri, and K. Majidzadeh-A, The Feasibility Study of Plasma-activated Water as a Physical Therapy to Induce Apoptosis in Melanoma Cancer Cells In-vitro. Iran J Pharm Res, 2021. 20: p. 337-350.
    73. Griseti, E., N. Merbahi, and M. Golzio, Anti-Cancer Potential of Two Plasma-Activated Liquids: Implication of Long-Lived Reactive Oxygen and Nitrogen Species. Cancers, 2020. 12: p. 721-735.
    74. Cabiscol Català, E., J. Tamarit Sumalla, and J. Ros Salvador, Oxidative stress in bacteria and protein damage by reactive oxygen species. International Microbiology, 2000, vol. 3, núm. 1, p. 3-8, 2000. 3: p. 3-8.
    75. Cohen, G., R. Farooqui, and N. Kesler, Parkinson disease: a new link between monoamine oxidase and mitochondrial electron flow. Proc Natl Acad Sci U S A, 1997. 94: p. 4890-4894.
    76. Lee, C.S., Y.J. Kim, H.H. Ko, and E.S. Han, Synergistic effects of hydrogen peroxide and ethanol on cell viability loss in PC12 cells by increase in mitochondrial permeability transition. Biochemical Pharmacology, 2005. 70: p. 317-325.
    77. Benard, O. and K.A. Balasubramanian, Effect of oxidized glutathione on intestinal mitochondria and brush border membrane. The International Journal of Biochemistry & Cell Biology, 1995. 27: p. 589-595.
    78. Kojtari, A., U. Ercan, J. Smith, G. Friedman, and R. Sensenig, Chemistry for antimicrobial properties of water treated with non-equilibrium plasma. J. Nanomed. Biotherapeutic Discovery, 2013: p. 1000120-1000124.
    79. Penta, J.S., F.M. Johnson, J.T. Wachsman, and W.C. Copeland, Mitochondrial DNA in human malignancy. Mutation Research/Reviews in Mutation Research, 2001. 488: p. 119-133.
    80. Zhou, D., L. Shao, and D.R. Spitz, Reactive oxygen species in normal and tumor stem cells. Adv Cancer Res, 2014. 122: p. 1-67.
    81. Van der Paal, J., E.C. Neyts, C.C.W. Verlackt, and A. Bogaerts, Effect of lipid peroxidation on membrane permeability of cancer and normal cells subjected to oxidative stress. Chem Sci, 2016. 7: p. 489-498.
    82. Sok, M., M. Šentjurc, and M. Schara, Membrane fluidity characteristics of human lung cancer. Cancer Letters, 1999. 139: p. 215-220.
    83. Berzingi, S., M. Newman, and H.-G. Yu, Altering bioelectricity on inhibition of human breast cancer cells. Cancer Cell International, 2016. 16: p. 72-80.
    84. Bortner, C.D., M. Gómez-Angelats, and J.A. Cidlowski, Plasma Membrane Depolarization without Repolarization Is an Early Molecular Event in Anti-Fas-induced Apoptosis *. Journal of Biological Chemistry, 2001. 276: p. 4304-4314.
    85. Madorran, E., A. Stožer, Z. Arsov, U. Maver, and J. Rožanc, A Promising Method for the Determination of Cell Viability: The Membrane Potential Cell Viability Assay. Cells, 2022. 11: p. 2314-2337.
    86. Zhang, Y., X. Chen, C. Gueydan, and J. Han, Plasma membrane changes during programmed cell deaths. Cell Research, 2018. 28: p. 9-21.
    87. Bortner, C.D., M. Gómez-Angelats, and J.A. Cidlowski, Plasma Membrane Depolarization without Repolarization Is an Early Molecular Event in Anti-Fas-induced Apoptosis Journal of Biological Chemistry, 2001. 276: p. 4304-4314.
    88. Galluzzi, L., J.M. Bravo-San Pedro, I. Vitale, S.A. Aaronson, J.M. Abrams, D. Adam, E.S. Alnemri, L. Altucci, D. Andrews, M. Annicchiarico-Petruzzelli, E.H. Baehrecke, N.G. Bazan, M.J. Bertrand, K. Bianchi, M.V. Blagosklonny, K. Blomgren, C. Borner, D.E. Bredesen, C. Brenner, M. Campanella, E. Candi, F. Cecconi, F.K. Chan, N.S. Chandel, E.H. Cheng, J.E. Chipuk, J.A. Cidlowski, A. Ciechanover, T.M. Dawson, V.L. Dawson, V. De Laurenzi, R. De Maria, K.M. Debatin, N. Di Daniele, V.M. Dixit, B.D. Dynlacht, W.S. El-Deiry, G.M. Fimia, R.A. Flavell, S. Fulda, C. Garrido, M.L. Gougeon, D.R. Green, H. Gronemeyer, G. Hajnoczky, J.M. Hardwick, M.O. Hengartner, H. Ichijo, B. Joseph, P.J. Jost, T. Kaufmann, O. Kepp, D.J. Klionsky, R.A. Knight, S. Kumar, J.J. Lemasters, B. Levine, A. Linkermann, S.A. Lipton, R.A. Lockshin, C. López-Otín, E. Lugli, F. Madeo, W. Malorni, J.C. Marine, S.J. Martin, J.C. Martinou, J.P. Medema, P. Meier, S. Melino, N. Mizushima, U. Moll, C. Muñoz-Pinedo, G. Nuñez, A. Oberst, T. Panaretakis, J.M. Penninger, M.E. Peter, M. Piacentini, P. Pinton, J.H. Prehn, H. Puthalakath, G.A. Rabinovich, K.S. Ravichandran, R. Rizzuto, C.M. Rodrigues, D.C. Rubinsztein, T. Rudel, Y. Shi, H.U. Simon, B.R. Stockwell, G. Szabadkai, S.W. Tait, H.L. Tang, N. Tavernarakis, Y. Tsujimoto, T. Vanden Berghe, P. Vandenabeele, A. Villunger, E.F. Wagner, H. Walczak, E. White, W.G. Wood, J. Yuan, Z. Zakeri, B. Zhivotovsky, G. Melino and G. Kroemer, Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death & Differentiation, 2015. 22: p. 58-73.
    89. Schmidt, A., S. Bekeschus, K. Wende, B. Vollmar, and T. von Woedtke, A cold plasma jet accelerates wound healing in a murine model of full-thickness skin wounds. Experimental Dermatology, 2017. 26: p. 156-162.
    90. Beck Jr., G.R., Inorganic phosphate as a signaling molecule in osteoblast differentiation. Journal of Cellular Biochemistry, 2003. 90: p. 234-243.
    91. Stein, G.S., J.B. Lian, J.L. Stein, A.J. Van Wijnen, and M. Montecino, Transcriptional control of osteoblast growth and differentiation. Physiol Rev, 1996. 76: p. 593-629.
    92. Choi, B.-B., J.-H. Choi, T.-H. Kang, S.-J. Lee, and G.-C. Kim, Enhancement of Osteoblast Differentiation Using No-Ozone Cold Plasma on Human Periodontal Ligament Cells. Biomedicines, 2021. 9: p. 1542-1554.

    無法下載圖示 全文公開日期 2033/08/17 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 2028/08/17 (國家圖書館:臺灣博碩士論文系統)
    QR CODE