簡易檢索 / 詳目顯示

研究生: 黃愛蘭
Karen - Sabrina Asiku
論文名稱: Molding of Bone Mimicry from Hydroxyapatite and Agarose
Molding of Bone Mimicry from Hydroxyapatite and Agarose
指導教授: 今榮東洋子
Toyoko Imae
口試委員: 鄧熙聖
Hsi-Sheng Teng
孫嘉良
Chia-Liang Sun
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 101
中文關鍵詞: 羥基磷灰石瓊脂糖抗張強度
外文關鍵詞: bone, hydroxyapatite, agarose, tensile strength
相關次數: 點閱:225下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 骨替代材料成為近年來的課題的研究,由於其模擬天然骨,適度的彈性,以及有限可塑性的硬度並提供肌肉附著的剛性結構的能力。在這項研究中,從羥基磷灰石和骨瓊脂糖模仿的造型進行了研究。此外,成功的過程,使模擬骨通過測定羥磷灰石糊劑和瓊脂糖的適當組合物進行優化。薄膜狀從骨模仿混合物變成。該薄膜的強度通過拉伸測量測試,以得到的拉伸強度數據到該膜的其故障。所得到的抗張強度為相媲美的天然骨的強度和生物玻璃材料的抗張強度,並對絕經後骨質疏鬆症的婦女是有益的。


    Bone substitute materials have becoming the topic research in recent year due to its ability to mimic the hardness of the natural bone, moderate elasticity, and limited plasticity and provide a rigid arrangement for muscle attachment. In this research, molding of bone mimicry from hydroxyapatite and agarose was investigated. In addition, the successful process to make the mimic bone was optimized by determining the adequate composition of hydroxyapatite paste and agarose. Thin film shape was obtained from the bone mimicry mixture. The strength of this thin film was tested by tensile measurement to obtain the tensile strength data up to its failure. The obtained tensile strength was comparable to the natural bone strength and the tensile strength of bioglass material. It is also found that this material might be beneficial for post-menopausal osteoporosis women.

    摘要 ii Abstract iii Acknowledgements iv Table of Contents vii List of Figures x List of Tables xvi Chapter 1 Introduction and Motivation 1 1.1 Introduction of Bone 1 1.2 Bone as an Organ 2 1.3 Bone in Macroscopic Anatomy 2 1.4 Basic Component in Bone Matrix 4 1.4.1 Organic Matrix 4 1.4.2 Mineral Component of Bone 7 1.5 Bone Defect 7 1.6 Bone Repair 9 1.7 Bone Substitute 10 1.8 Material for Bone Substitute 11 1.9 Mechanical Properties of Bone 17 1.10 3D Printing 18 1.11 Human Anatomy 18 1.12 Problems Formulation 20 1.13 Research Purposes 21 Chapter 2 Research Methodology 22 2.1 Research Design 22 2.2 Materials 23 2.3 Experimental Procedure 24 2.3.1 Synthesis of Hydroxyapatite Nanoparticle 24 2.3.2 Preparation of Bone Mixture 24 2.3.3 Preparation of Bone Mimicry Thin Film 25 2.3.4 Equipment and Characterization 26 Chapter 3 Results and Discussion 27 3.1 Preparing Bone Mimicry Mixture 27 3.1.1 Measurement of Nanoparticle Size in Colloidal Suspension by Dynamic Light Scattering 28 3.1.2 Characterization of Colloidal Suspension under Light Microscope 29 3.1.3 Measurement of Hydroxyapatite Nanoparticle under Transmission Electron Microscopy 32 3.1.4 Preparing Agarose Gel in 5 wt% 37 3.1.5 Preparation of Bone mimicry structure (part 1) 37 3.1.6 Thermogravimetric Analysis 43 3.1.7 Preparation of Bone Mimicry Structure in Cylinder (part 2) 47 3.1.8 Preparation of Bone Mimicry Structure in Thin Film (part 3) 51 3.2 3D Printing 65 Chapter 4 Conclusion 67 Future Research 68 References 69

    [1] Hull, D. (1981). An Introduction to Composite Materials (1st Ed.), Cambridge University Press, ISBN 0-521-38190-8, Cambridge, UK.
    [2] Cowin, S. (2001). Bone Mechanics Handbook (2nd Ed.), CRC Press, ISBN 0-8493-9117-2, Boca Raton, USA.
    [3] Lakes, R. (2003). Composite Biomaterials, In: Biomaterials: Principles and Applications, J. B. Park & J. D. Bronzino, (Ed.), CRC Press, ISBN 0-849-31491-7, Boca Raton, USA.
    [4] Park, J. & Lakes, R. (1992). Biomaterials: an Introduction (2nd Ed.), Plenum Press, ISBN 0-306-43992-1, New York, USA.
    [5] Meyer, U. & Wiesmann, H. P. (2006). Bone and Cartilage Engineering, Springer, ISBN 3-540-25347-5, New York, USA.
    [6] An, Y.H. & Draughn, R. A. (2000). Mechanical Testing of Bone and the Bone-Implant Interface, CRC Press, ISBN 0-8349-0266-8, Florida, USA.
    [7] Langton, C. M. & Njeh, C. F. (2004). The Physical Measurement of Bone, Institute of Physics Publishing Bristol and Philadelphia, ISBN 0-7503-0838-9, London, England.
    [8] Glimcher, M.J. (1976). Composition, Structure, and Organization of Bone and Other Mineralized Tissues and The Mechanism of Calcification, in Handbook of Physiology: Endocrinoloigy, Greep, R.O. and Astwood, E.B., Eds., American Physiological Society, Washington, D.C.
    [9] Chapman, J.A. and Hulmes, D.J. (1948). Electron Microscopy of the Collagen Fibril, in Ultrastructure of the Connective Tissue Matrix, Ruggeri, A. and Motta, P.M., Eds., Martinus NIjhoff Publishers, Boston.
    [10] Van der Restm M., The collagens of bone, in Bone, Vol.3: Bone Matrix and Bone Spesific Products, Hall, B.K., Ed., CRC Press, Boca Raton, FL, 1991, 187.
    [11] Veis, A. and Sabsay, B., The Collagen of Mineralized Matrices, in Bone and Mineral Research, Vol. 5, Peck, W.A., Ed., Elsevier Science Publishers, Amsterdam, 1987, 1.
    [12] Glimcher, M. J., Krane, S. M. (1968). The Organization and Structure of Bone and the Mechanism of Calcification. In Treatise on Collagen (eds Gould, B. S. amd Ramachson, G. N.), Vol. 2B, pp. 67-251. Academic Press, Newyork.
    [13] Freudenberg, E. and Györgi, P. (1921). Uber Kalkbindung durch tieresche Gewebe III. Biochem. Z. 118, 50-4.
    [14] Glimcher, M. J. (1959). Molecular Biology of Mineralized Tissue with Particular Reference to Bone. Rev. mod. Phys. 31, 359-93.
    [15] Glimcher, M. J. (1960). Specifity of the Molecular Structure of Organic Matrices in Mineralization. In Calcification in biological systems (ed. Sognnaes, R. F.) pp. 421-87. Publication No. 24, American Association for the Advancement of Science, Washington, D. C.
    [16] Katz, E. P. (1969). The Kinetics of Mineralization in Vitro. 1. The Nucleation Properties of 640 Å collagen at 25 º. Biochim. Biophys. Acta
    [17] Weinstock, A., King, P. C., and Wuthier, R. E. (1967). The Ion Binding Characteristics of Reconstituted Collagen. Biochem. J. 102, 933-88.
    [18] Glimcher, M. J., Krane, S. M. (1964). The Incorporation of Radioactive Inorganic Orthophosphate as Organic Phosphate by Collagen Fibrils in Vitro. Biochemistry 3, 195-202.
    [19] Francois, C. J. and Glimcher, M. J. (1967). The Isolation and Amino Acid Composition of the α Chains of Chicken Bone Collagen. Biochim. Biophys. Acta 133, 91-6.
    [20] Höhling, H. J., Hall, T. A., Boothroyd, B., Cooke, C. J., Duncumb, P., Fearnhead, R. W., and Fitton Jackson, S. (1968a). Electron Probe Studies of Apatite in Bone and Aorta. In Les Tissus Calcifies 1968, Proceedings Fifth European Symposium 1967, Société d’ Edition d’enseignement supérieur, Paris.
    [21] Höhling, H. J., Hall, T. A., Boyde, A., and Rosenstiel, A. P. von. (1968b). Combined electron probe and electron diffraction amalysis of prestages and early stages of dentine formation in rat incisors. Calc. Tiss. Res. 2, Suppl., 5-5A.
    [22] Spadaro, J. A., Becker, R. O., and Bachman, C. H. (1970). Size specific metal complexing sites in native collagen. Nature, Lond. 225, 1134-6.
    [23] Marino, A. A. and Becker, R. O. (1970). Evidence for epitaxy in the formation of collagen and apatite. Nature, Lond. 226, 652-3.
    [24] Franzblau, C. (1971). Elastin. In Comprehensive Biochemistry (ed. Florkin, M.), pp. 659-712, Elsevier, Amsterdam.
    [25] Traub, W. and Piez, K. A. (1971). The Chemistry and Structure of Collagen. Adv. Protein. Chem. 25, 243-352. [69]
    [26] Cameron, D. A. (1972). The Ultrastructure of Bone. In The Biochemistry and Physiology of Bone (ed. Bourne, G. H.) (2nd edn), Vol. 1, pp. 191-236. Academic Press, New York. [32, 40, 44, 46, 49, 64, 118, 196]
    [27] Höhling, H. J., Kreilor, R., Neubauer , G., and Boyde, A. (1971). Electron Microscopy and Electron Microscopical Measurements of Collagen Mineralization in Hard Tissue. Z. Zellforsch. Mikrosk. Anat. 122, 36-52. [118]
    [28] Bernard, G. W. Pease, D. C. (1969). An Electron Microscopic Study of Initial Intramembranous Osteogenesis. Am. J. Anat. 125, 271-90. [33,40,41,115, 116. 118]
    [29] Vaughan, J. M. (1975). The Physiology of Bone (2nd Ed.), Clarendon Press, Oxford University Press, Oxford, UK.
    [30] Seyedin, S.M. amd Rosen, D.M., (1992) Unique Bone-Derived Cytokines, In Cytokines and Bone Metabolism, Gowen, M., Ed., CRC Press, Boca Raton, FL, 109.
    [31] Bonucci, E., Silvestrini, G., and Bianco, P., (1992) Extracellular Alkaline Phosphate Activity in Mineralizing Matrices of Cartilage and Bone: Ultrastructural Localization using a Cerium-Based Method, Histochemistry, 97, 323.
    [32] De Bernard, B., Bianco, P., Bonucci, E., et al., (1986) Biochemical and Immunohistochemical Evidence that in Cartilage an Alkaline Phosphate is a Ca2+ - Binding Glycoprotein, J. Cell Biol., 103, 1615.
    [33] Eeckhout, Y. and Delaisse, J. M., (1988) The Role of Collagenase in Bone Resorption. An Overwiew, Pathol. Biol., 36, 1139.
    [34] Jilka, R.L., (1989) Procollagenase Associated with the Noncalcified Matrix of Bone and Its Regulation by Parathyroid Hormone, Bone, 10, 353.
    [35] Bonucci, E. and Silvestrini, G., Ultrastructure of the Organic Matrix of Embryonic Avian Bone After en bloc Reaction with Various Electron-Dense “Stains,” Acta anat., 156,22,1996.
    [36] Gorski, J.P., (1998) Is All Bone the Same? Distinctive Distributions and Properties of Non-Collageneous Matrix Proteins in Lamellar vs. Woven Bone Imply the Existence of Different Underlying Osteogenic Mechanisms, Crit. Rev. Oral Biol. Med., 9, 201,
    [37] McKee, M.D., Farach-Carson, M.C., Butler, W.T., et al., (1993) Ultrastructural Immunolocalization of Non-Collageneous (Osteopontin and Osteocalcin) and Plasma (Albumin and α2 HS-Glycoprotein) Proteins in Rat Bone, J. Bone Miner. Res., 8, 484,.
    [38] McKee, M.D., Glimcher, M.J., and Nanci, A., (1992) High-Resolution Immunolocalization of Osteopontin and Osteocalcin in Bone and Cartilage during Endochondral Ossification in the Chicken Tibia, Anat. Rec., 234, 479.
    [39] McKee, M.D., and Nanci, A., (1995) Postembedding Colloidal-Gold Immunocytochemistry of Noncollageneous Extracellular Proteins in Mineralized Tissues, Micros. Res., 31, 44.
    [40] Riminucci, M., Silvestrini, G., Bonucci, E., et. al., (1995) The Anatomy of Bone Sialoprotein Immunocreative Sites in Bone as Revealed by Combined Ultrastructural Histochemistry and Immunohistochemistry, Calcif. Tissue Int., 57, 277.
    [41] Boskey Al (2005), The Organic and Inorganic Matrices in Bone Tissue Engineering, Hollinger J.O., Einhorn T.A., Doll B.A., Sfeir C. (eds.), Boca Raton, CRC Press.
    [42] Gokhale J., Robey P.G., Boskey A.L. Marcus R., Feldman D., Kelsey J., eds., (2001), Osteoporosis in The Biochemistry of Bone (2nd ed.), San Diego, Academic Press.
    [43] Organization, W.H. (1994) Assessment of Fracture Risk and Application to Screening for Postmenopausal Osteoporosis., Geneva, Switzerland.
    [45] Schultz, O., Sittinger, M. Haeupl, T., and Burmester, G. R. (2000) Emerging Strategies of bone and joint repair. Arthritis Res 2(6): 433-6.
    [46] Damien, C.J. and Parsons J.R. (1991) Bone graft and bone graft substitutes: a review of current technology and applications. J Appl Biomater 2(3): 187-208.
    [47] Infante-Cossio P., Gutierrez-Perez J.L., Torres-Lagares D., Garcia-Perla Garcia A., Gonzales-Padilla J.D. (2007) Bone Cavity Augmentation in Maxillofacial Surgery using Autologous Material. Rev Esp Cir Oral Maxillofac;29:7-19.
    [48] Rueger J.M. (1998) Bone Replacement Materials-State of the Art and the Way Ahead. Orthopädde;27(1):72-9.
    [49] Bohner M. Calcium Orthophosphates in Medicine: from Ceramics to Calcium Phosphate Cements. Injury 200;31 (Suppl 4):D37-47
    [50] Le Huec J.C., Clement D., Lesprit E., Faber J. (2000) The Use of Calcium Phosphates Their Biological Properties. Eur J Orthop Surg Traumatol;10:223-9.
    [51] Bohner M. (2001) Physical and chemical aspects of calcium phosphates used in spinal surgery. Eur Spine J;10:S114-21.
    [52] Greenwald A.S., Boden S.D., Goldberg V.M., Khan Y., Laurencin C.T., Rosier R.N. Bone-graft substitutes: facts, fictions, and applications. J Bone Joint Surg 2001; 83A:98-103.
    [53] Vail T.V., Urbaniak J.R. (1996) Donor-site morbidity with use of vascularized autogeneous fibular. J Bone Joint Surg Am; 78:204-11.
    [54] Bloemers F.W., Blokhuis T.J., Patka P., Bakker F.C, Wipperman B.W., Harman H.J.T.M. (2003) Autologous bone versus calcium-phosphate ceramics in treatment of experimental bone defects. J Biomed Mater Res B;66B:526-31.
    [55] Arrington E.D., Smith W.J., Chambers H.G., Bucknell A.L., Davino N.A. (1996) Complications of iliac crest bone graft harvesting. Clin Orthop Relat R;329:300-9.
    [56] Den Boer F.C., Wippermann B.W., Blokhuis T.J., Patka P., Bakker F.C., Haarman H.J.T.M. (2003) Healing of segmental bone defects with granular porous hydroxyapatite augmented with recombinant human osteogenic protein-1 or autologous bone marrow. J Orthopaed Res;21:521-8.
    [57] Kohn JaRL (1996) Bioresorbable and Bioerodible materials. Biomaterials Science: An Introduction to Materials in Medicine. Ratner ASHDB, Schoen FJ, Lemons JE. San Diego, CA, Academic Press: 64-73.
    [58] Wahl D.A. and Czernuszka J.T. (2006) Collagen-Hydroxyapatite Composites for Hard Tissue Repair. European Cells and Materials Vol 11: 43-56. Oxford, UK.
    [59] Wang M.L., Tuli R., Manner P.A., Sharkey P.F., Hall D.J., Tuan R.S. (2003) Direct and Indirect Induction of Apoptosis in Human Mesenchymal Stem Cells in Response to Titanium Particles. J Orthop Res 21: 697-707.
    [60] Kaihara S., Bessho K., Okubo Y., Sconobe J., Kusumoto K., Ogawa Y., Iizuka T. (2002) Effect of FK506 on Osteoinduction by Recombinant Human Bone Morphogenic Protein-2 Life Sci 72: 247-256.
    [61] Kokubo, T., Kim, H-M., Kawashita, M. (2003) Biomaterials, v. 24, p. 2161-2175.
    [62] Jones, F.H. (2001) Surface Science Reports, v.42, n. 3-5, p. 75-205.
    [63] Kikuchi, M., Itoh, S., Ichinose, S., Shinomiya, K., Tanaka, J. (2001) Biomaterials, v. 22, n. 13, p. 1705-1711.
    [64] Schnettler, R., Alt, V., Dingeldein, E., Pfefferle, H-J., Killian, O., Meyer, C.; Heiss, C.; Wenisch, S. (2003) Biomaterials, v.24, p. 4603-4608.
    [65] Liou, S-C., Chen, S-Y., Heiss, C., Wenisch, S. (2003) Biomaterials, v. 24, p. 4603-4608.
    [66] Mavropoulos, E.’ Rossi, A.M., Rocha, N.C.C., Soares; G.A.; Moreira, J.C., Moure, G.T. (2003) Materials Characterization, v. 5578.
    [67] Li, Y.; Kleain, (1994) C.P.A.T. Journal of Materials Science-Materials Medical, v.5, p. 263,.
    [68] Allen, G.C.; Ciliberto, E.; Fragalà, I., Spoto, G. (1996) Nuclear Instruments and Methods in Physics Research B, v. 116, p. 457-460.
    [69] De Groot, K. (1986) Macropore Tissue Ingrowth: A Quantitative and Qualitative Study on Hydroxyapatite Ceramics, Biomaterials, 7, 137-143.
    [70] Jarcho M., (1986) Biological Aspects of Calcium Phosphates. Properties and Applications, Dent. Clin. North Am., 30, 25-47.
    [71] Hutmacher D.W., Schantz J.T., Lam C.X.F., Tan K.C., Lim T.C. (2007) State of the Art and Future Directions of Scaffold based Bone Engineering from a Biomaterials Perspective. J Tissue Eng Regenerant Med;1:245-60.
    [72] Habraken W., Wolke J.G.C., Jansen J.A. (2007) Ceramic Composites as Matrices and Scaffolds for Drug Delivery in Tissue Engineering. Adv Drug Deliv Rev;59:234-48.
    [73] Ginebra M.P., Traykova T., Planell J.A. (2006) Calcium Phosphate Cements as Bone Drug Delivery Systems: a review. J Contr Release; 113:102-10.
    [74] Ginebra M.P., Traykova T., Planell J.A. (2006) Calcium Phosphate Cements: Competitive dug Carriers for the Musculosketal System Biomaterials;27:2171-7.
    [75] Bauer T.W., Geesink R.C., Zimmerman R., Mcmahon J.T. (1991) Hydroxyapatite-Coated Femoral Stems. Histological Analysis of Components Retrieved of Autopsy. J Bone Joint Surg;72:1439.
    [76] Poinern G.E., Brundavanam R.K., Mondinos N., Jiang Z.T. (2009) Synthesis and Characterization of Nanohydroxyapatite using an Ultrasound Assisted Method. Ultrason Sonochem;16:469-74.
    [77] Legeroz R.Z. (1993) Biodegradation and Bioresorption of Calcium Phosphate Ceramics. Clin Mater;14:65-88.
    [78] Chang, B.-S., Lee, C.-K., Hong, K.-S., Youn, H.-J., Ryun, H.-S., Chung, S. S. et al., (2000) Osteoconduction at Porous Hydroxyapatite with Various Pore Configuration. Biomaterials, 21, 1291-1298.
    [79] Hench, L. L., (1991) Biomaterials: from concept to clinic. J. Am. Ceram. Soc., 74, 1487-1510.
    [80] Bohner M. (2000) Calcium Orthophosphates in Medicine: from Ceramics to Calcium Phosphate Cements. Injury-Int J Care Injured;31:S37-47
    [81] Dorozhkin S.V. (2009) Calcium Orthophosphate-Based Biocomposites and Hybrid Biomaterials. J Mater Sci; 44:2343-87.
    [82] Dorozhkin S.V. (2008) Calcium Orthophosphates Cements for Biomedical Application. J Mater Sci;43:3028-57.
    [83] Dorozhkin SV. (2009) Calcium Ortophosphates in Nature, Biology and Medicine. Materials;2:399-498.
    [84] Ginebra M.P., Espanol M., Montufar E.B., Perez R.A., Mestres G. (2010) New Processing approaches in Calcium Phosphate Cements and Their Applications in Regenerative Medicine. Acta Biomater;6:2863-73.
    [85] Bohner M. (2010) Design of Ceramic-Based Cements and Putties for Bone Graft Substitution. Eur Cells Mater;20:1-12
    [86] Johnson A.J.W., Herschler B.A. (2011) A Review of the Mechanical Behavior of CaP and CaP/polymer Composites for Application in Bone Replacement and Repair. Acta Biomater;7:16-30.
    [87] Boskey A. Mineralization of bones and teeth. Elements Mag 2007; 3:385-392.
    [88] Dewith G., Vandijk H.J.A., Hattu N., Prijs K. (1981) Preparation. Microstructure and Mechanical-Properties of Dense Polycrystalline Hydroxy Apatite. J Mater Sci 16: 1592-1598.
    [89] Bonfield W. (1984) Elasticity and Viscoelasticity of Cortical Bone. In: Hastings GW and Ducheyne P eds Natural and Living Biomaterials, CRC Press, Boca Raton.
    [90] Zhou H, Lee (2011) Nanoscale Hydroxyapatite Particles for Bone Tissue Engineering. Elsevier, Acta Biomaterial 7: 2769-2781.
    [91] Boysen, E., Nanotechnology. n.p. 2015. Web. 14 January 2016.
    http://www.understandingnano.com/
    [92] Ostiguy, C., Roberge, B., Woods, C., Soucy, B., (2010) IRSST – Communications Division: Montréal.
    [93] Buzea, C. Blandino, LI.P. Robbie, K. (2007) Biointerphases 2 MR17-MR172.
    [94] Stupp S.I., Cigler G.W. (1992) Organoapatites: Materials for Artificial Bone. I. Synthesis and Microstructure. J Biomed Mater Res;26:169-83.
    [95] Clarke KI, Graves SE, Wong ATC, Trifitt JT, Francis MJO, Czernuszka JT (1993) Investigation into the Formation and Mechanical-Properties of a Bioactive Material Based on Collagen and Calcium-Phosphate. J Mater Sci Mater Med 4: 107-110.
    [96] Kikuchi M., Matsumoto H.N., Yamada T., Koyama Y., Takuda K., Tanaka J. (2004b) Glutaraldehyde Cross-Linked Hydroxyapatite/Collagen Self-Organized Nanocomposites. Biomaterials 25: 63-69.
    [97] Lake P.S., Hald S.E., Barocas H.V. (2011) Collagen-Agarose Co-Gels as a Model for Collagen-Matrix Interaction in Soft Tissues Subjected to Indentation. J Biomed Mater Res Part A 2011:99A:507-515.
    [98] Collagen from Calf Skin. Sigma Aldrich. n.d. Web. 31 May 2016.
    http://www.sigmaaldrich.com/catalog/product/sigma/c8919?lang=en®ion=TW
    [99] Lim F., Sun A.M. (1980). Microencapsulated Islets as Bioartificial Endocrine Pancreas. Science 210:908-910.
    [100] Iwata H., Amemiya H., Matsuda T., Takano H., Hayashi R., Akutsu T., (1989). Evaluation of Microencapsulated Islets in Agarose Gels as Bioartificial Pancreas by Studies of Hormone Secretion in Culture and Xenotransplantation. Diabetes 38(Suppl. 1):224-225.
    [101] Matthew HW, Salley SO, Peterson WD, Klein MD. (1993). Complex Coacervate Microcapsules for Mammalian Cell Culture and Artificial Organ Development. Biotechnol Prog 9:510-519.
    [102] Clark AH, Ross-Murphy SB. (1987). Structural and Mechanical Properties of Biopolymer Gel. Adv Polym Sci 83:57-207.
    [103] Dumitriu S, Vidal PF, Chornet E. (1996). Hydrogels based on Polysaccharides. In: Dumitriu S, editor. Polysaccharides in medical applications. New York: Marcel Dekker, pp. 125-241.
    [104] W. M. Kühtreiber et al. (eds.), (1999) Cell Encapsulation Technology and Therapeutics. Springer Science Business Media New York.
    [105] Liang, J. N.; Stevens, E. S.; Morris, E. R.; Rees, D. A. (1979) Biopolymers, 18, 327-333.
    [106] Norton, I. T.; Goodall, D. M.; Austen, K. R. J.; Morris, E. R. Biopolymers 1986, 25, 1009-1029.
    [107] Agarose Low EEO, for Electrophoresis, (Mr ≤0.07), ACROS Organics™. Fisher Scientific. n.d. Web. 3 June 2016.
    https://www.fishersci.com/shop/products/agarose-low-eeo-electrophoresis-mr-0-07-acros-organics-3/p-30104
    [108] Silver, F.H., Christiansen, D.L. Biomaterials Science and Biocompatibility. 1999. Springer
    [109] J.W. Jung, H.-W. Kang, T.-Y. Kang, J.H. Park, J. Park, D.-W. Cho. (2012) Projection Image-Generation Algorithm for Fabrication of a Complex Structure using Projection-Based Microstereolithography Int J Precis Eng Manuf, 13, pp. 445–449
    [110] B. Derby. Printing and Prototyping of Tissues and Scaffolds Science, 338 (2012), pp. 921–926
    [111] Fleisch, H. (1964). Clin. Orthop. 32, 170.
    [112] Dziewiatkowski, D. D. (1964). Clin. Orthop. 35, 189.
    [113] Agarose Product Information. Sigma Aldrich. n.d. Web. 3 June 2016.
    https://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Sigma/Product_Information_Sheet/a9539pis.pdf
    [114] Pramanik. N, Imae. T. (2012) Fabrication and Characterization of Dendrimer-Functionalized Mesoporous Hydroxyapatite. Langmuir.
    [115] Fam, Y. (2012), Fabrication of Hydroxyapatite-Dendrimer-Platinum Nanocomposites and Their Application. NTUST. Taiwan.
    [116] Havaldar R, Pilli S C, Putti B B. (2014). Insights into the Effects of Tensile and Compressive Loadings on Human Femur Bone. Adv Biomed Res;3:101.
    [117] Leonor I B, et al. (2002). Novel Starch Thermoplastic/ Bioglass® Composites: Mechanical Properties, Degradation Behavior and In-Vitro Bioactivity. Journal of Materials Science: Materials in Medicine;13:10
    [118] Heaney, R. P. (1987). Qualitative Factors in Osteoporotic Fracture: The State of the Question. Osteoporosis 1:281-287.
    [119] Faulkner, K. G., Cummings, S. R., Black, D., Palermo, L., Gluer, C.-C., and Genant, H. K. (1993). Simple Measurement of Femoral Geometry Predicts Hip Fracture: The Study of Osteoporotic Fractures. J Bone Miner Res 8:121 l&1217.
    [120] Osteoporosis Information. Spineuniverse. n.d. Web. 3 June 2016. http://www.spineuniverse.com/conditions/osteoporosis/osteopenia-osteoporosis-there-difference.pdf

    無法下載圖示 全文公開日期 2021/07/28 (校內網路)
    全文公開日期 2026/07/28 (校外網路)
    全文公開日期 2021/07/28 (國家圖書館:臺灣博碩士論文系統)
    QR CODE