簡易檢索 / 詳目顯示

研究生: Wubshet Mekonnen Girma
Wubshet Mekonnen Girma
論文名稱: CuFeS2奈米材料製備與生醫標靶治療應用
One-Pot Synthesis and Characterization of CuFeS2 Nanoparticles for Targeted Theranostic Biomedical Applications
指導教授: 張家耀
Jia-Yaw Chang
口試委員: 麥富德
Fu-Der Mai
何郡軒
Jinn-Hsuan Ho
李介仁
Jie-Ren Li
蔡伸隆
Shen-long Tsai
張家耀
Jia-Yaw Chang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 190
中文關鍵詞: CuFeS2PhotothermalphotodynamicChemotherapySynergisticZebrafish
外文關鍵詞: CuFeS2, photothermal
相關次數: 點閱:195下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

I-III-VI族奈米粒子的生物應用如多重生醫顯影、生物感測器、藥物制放以及光動力與光熱治療為基於其表面修飾和各種功能性小分子化學藥物與癌細胞。然而,合成一具有良好分散性與水溶性且應用複雜度極高如上所述的奈米粒子則為一大難題。
本論文第一次披露以一鍋化熱裂解法,將銅與鐵的前驅物溶解於十二硫醇與十八烯中以製備CuFeS2奈米材料。此方法操作簡易與高再現性,同時具備大量生產的潛力。表面修飾的部分則利用玻尿酸(Hyaluronic acid)作為相轉換的媒介形成CuFeS2@HA並可同時標靶表面擁有過量CD44(Cluster Determinant)受體的癌細胞。在光學性質方面,由於其寬廣的吸收能譜能吸收進紅外光區的能量使其擁有優異的光熱轉換效率達74.2%,因而能作為癌細胞治療的一種方法。另外,在B16F1及HeLa細胞的體外及斑馬魚卵的體內材料毒性測試與溶血反應都顯示此材料良好的生物相容性。在藥物治療的應用上,我們修飾白金藥物於CuFeS2@HA形成CuFeS2@HA-Pt(IV),奈米粒子可作為藥物載體並利用PH值與穀胱甘肽(GSH)模擬癌細胞的生理環境作為制放手段以降低對一班正常細胞的副作用。同時,結合上述光熱與藥物雙重治療的實驗證明相比單一抗癌療法的應用具有相對較強的功效。
第二部分則利用胎牛血清蛋白(Bovin Serum Albumin)增進奈米粒子的生物相容性與穩定性,並修飾葉酸使其具有標靶功能與市售光敏劑Ce6(Chlorin e6)作為光動力治療的來源形成Ce6:CuFeS2@BSA-FA。材料毒性方面則如上段所述,在體外細胞及體內活體測試中都顯示其低毒性的特點之外,此複合奈米粒子使用單一雷射激發波長作為光熱與光動力治療所需的能量來源並顯示較高的單態氧濃度與抗癌效果。此結果可取代一般需使用兩種以上雷射波長的情況並提供一新穎的抗癌療法,充分展現其在生物醫學領域應用的潛力。


Nanoparticles with surface modified and conjugated with targeting groups are of central importance in biomedical applications. In this regard, I-III-VI semiconductor nanomaterials are a particular interest in multimodal imaging, biosensing, chemotherapy, photothermal therapy and photodynamic therapy as a whole in theranostic applications due to their fascinating properties when they interact with cancer cells. However, the synthesis process remains a problem in finding an approach to fabricate in large scale with monodispersed nanoparticles, related to a way of finding water-soluble nanoparticles and how to make them effective and efficient probe for diagnosis and therapeutic applications of cancer cells. In the present study, for the first time, CuFeS2 nanocrystals were successfully prepared through a facile noninjection-based synthetic strategy, by reacting Cu and Fe precursors with dodecanethiol in a 1-octadecene solvent. This one-pot noninjection strategy features easy handling, large-scale production, and high synthetic reproducibility. Following hyaluronic acid (HA) encapsulation, CuFeS2 nanocrystals coated with HA (CuFeS2@HA) not only readily dispersed in water and showed improved biocompatibility but also possessed a tumor-specific targeting ability of cancer cells bearing the cluster determinant 44 (CD44) receptors. The encapsulated CuFeS2@HA showed broad optical absorbance from the visible to the near-infrared (NIR) region and high photothermal conversion efficiencies of about 74.2%. They can, therefore, be utilized for the photothermal ablation of cancer cells with NIR light irradiation. In addition, toxicity studies in vitro (B16F1 and HeLa) and in vivo (zebrafish embryos), as well as in vitro blood compatibility studies, indicated that CuFeS2@HA show low cytotoxicity at the doses required for photothermal therapy. More importantly, CuFeS2@HA can be used as delivery vehicles for chemotherapy cisplatin(IV) prodrug forming CuFeS2@HA-Pt(IV). Their release profile revealed pH- and glutathione-mediated drug release from CuFeS2@HA-Pt(IV), which may minimize the side effects of the drug to normal tissues during therapy. Subsequent in vitro experiments confirmed that the use of CuFeS2@HA-Pt(IV) provides an enhanced and synergistic therapeutic effect compared to that from the use of either chemotherapy or photothermal therapy alone. The second part of this thesis presents, CuFeS2 nanoparticles functionalized and phase transferred with the help of bovine serum albumin (BSA), for improved solubility, biocompatibility, and physiological stability. The as-prepared CuFeS2@BSA nanoparticles further conjugated with folic acid and chlorin e6 (Ce6), Ce6:CuFeS2@BSA-FA, for tumor-targeted PTT and PDT applications upon single-laser irradiations. The cytotoxicity of the prepared Ce6:CuFeS2@BSA-FA nanoprobe was verified in vitro (using HeLa and HepG2 cells) and in vivo using zebrafish embryos. The combined single-laser-induced phototherapeutic were then performed in vitro using HeLa and HepG2 cells. The results demonstrate combined phototherapy with single-laser-induced approach effectively killed cancer cells and showed higher levels of reactive oxygen species (ROS) generations. The multifunctional applications of our material showed a promising approach for combinational therapy for future biomedical applications to battle cancer, by canceling the use of different wavelength lasers.

CHINESE ABSTRACT i ABSTRACT iii ACKNOWLEDGEMENTS vi TABLE OF CONTENTS vii LIST OF FIGURES xiii LIST OF TABLES xxiv LIST OF SCHEMES xxv LIST OF ABBREVIATIONS xxvi CHAPTER-ONE 1 INTRODUCTION 1 1.1 GENERAL INTRODUCTION 2 1.2 OBJECTIVE OF THE STUDY 7 1.3 STRUCTURE OF THE DISSERTATION 8 CHAPTER-TWO 10 LITERATURE REVIEW 10 2.1 NANOPARTICLES 11 2.2 Semiconductor Quantum Dots (QDs) 12 2.3 The quantum confinement, optical properties, and core/shell structure of I -III-VI QDs 13 2.4 Synthesis of I-III-VI QDs 19 2.4.1 Nucleation and Growth 21 2.4.2 Hot injection method 23 2.4.3 Non injection (heating up) approach 27 2.4.4 Solvothermal approach 30 2.4.5 Hydrothermal approach 32 2.4.6 Microwave irradiation approach 34 2.5 Phase transfer strategies and bioconjugation 37 2.5.1 Ligand exchange 38 2.5.2 Encapsulations with water soluble molecules 41 2.6 I-III-VI QDs biomedical applications 47 2.6.1 Optical imaging 47 2.6.2 Magnetic resonance imaging (MRI) 49 2.6.3 Drug Delivery 51 2.6.4 Photo-therapeutic applications 52 CHAPTER-THREE 56 Synthesis of Cisplatin(IV) Prodrug -Tethered CuFeS2 Nanoparticles in Tumor-Targeted Chemotherapy and Photothermal therapy 56 3.1 INTRODUCTION 57 3.2 EXPERIMENTAL SECTION 60 3.2.1 Chemicals. 60 3.2.2 Synthesis of CuFeS2 NPs. 61 3.2.3 Phase Transfer of CuFeS2 NPs to an Aqueous Phase. 61 2.2.4 Synthesis of cis, cis, trans-Pt(NH3)2Cl2(OH)2 62 2.2.5 Synthesis of cis, cis, trans-diamminedichlorodisuccinato-platinum(IV) (cisplatin(IV) prodrug) 62 3.2.6 Cell Culture and Cell Viability Test. 63 3.2.7 Loading Anticancer Drugs into CuFeS2@HA NPs. 63 3.2.8 Drug Release from CuFeS2@HA-Pt(IV) NPs. 64 3.2.9 Measurements of the CuFeS2@HA NPs’ Photothermal Effects. 65 3.2.10 In Vitro Experiment on the Photothermal Ablation of Cancer Cells. 65 3.2.11 Zebra Fish Culture and Embryonic Toxicity of CuFeS2@HA NPs. 66 3.2.12 Hemolysis. 67 3.2.13 Trypan Blue Staining Experiments. 68 3.2.14 Characterization. 68 3.3 RESULTS AND DISCUSSION 69 3.3.1 Synthesis and characterization of the CuFeS2 NPs. 69 3.3.2 Synthesis and characterization of HA-capped CuFeS2 NPs. 73 3.2.3 Photothermal properties of CuFeS2@HA NPs. 78 3.3.4 In vitro and in vivo biocompatibility tests of CuFeS2@HA NPs. 82 3.3.5 In vitro drug loading and release and cytotoxicity studies of CuFeS2@HA-Pt(IV). 86 3.3.6 In vitro feasibility of photothermal- and chemo-therapy. 93 3.4 SUMMARY 102 CHAPTER-FOUR 103 4.1. INTRODUCTION 104 4.2 EXPERIMENTAL SECTION 109 4.2.1 Chemicals 109 4.2.2 Preparation of CuFeS2 NPs. 109 4.2.3 Phase transfer of CuFeS2 NPs to an aqueous phase using bovine serum albumin (BSA). 110 4.2.4 Conjugation of CuFeS2@BSA with folic acid 110 4.2.5 Conjugation of chlorin e6 (Ce6) into CuFeS2@BSA-FA. 111 4.2.6 Cell Culture and Cell Viability Test. 111 4.2.7 Zebra Fish Culture and Toxicity of Ce6:CuFeS2@BSA-FA to Embryonic. 112 4.2.8 Heating experiments 113 4.2.9 Photodynamic Effects of Ce6:CuFeS2@BSA-FA. 113 4.2.10 In Vitro Photothermal/ photodynamic Ablation efficiency of Cancer Cells with Ce6:CuFeS2@BSA-FA. 113 4.2.11 Trypan blue staining experiments 114 4.2.12 In vitro cellular uptake 114 4.2.13 In vitro investigations of ROS generations 115 4.2.14 Characterizations 115 4.3 RESULTS AND DISCUSSION 117 4.3.1 Synthesis and characterization of oil-phase CuFeS2 NPs 117 4.3.2 Synthesis and characterization of BSA capped CuFeS2 NPs 118 4.3.3 Conjugation of Ce6, FA and CuFeS2@BSA NPs 120 4.3.4 Ce6:CuFeS2@BSA-FA heat and ROS generation using a single laser 125 4.3.5 In vitro cytotoxicity and in vivo zebrafish toxicity studies 128 4.3.6 In vitro PTT/ PDT combined therapy using Ce6:CuFeS2@BSA-FA 131 4.3.7 Cellular uptake study and intercellular ROS generations of Ce6:CuFeS2@BSA-FA 135 4.4 SUMMARY 141 CHAPTER-FIVE 142 CONCLUSIONS AND FUTURE OUTLOOKS 142 5.1 Conclusions 143 5.2 Future Outlooks 144 REFERENCE 146 APPENDIX 160

[1] C.E. DeSantis, C.C. Lin, A.B. Mariotto, R.L. Siegel, K.D. Stein, J.L. Kramer, R. Alteri, A.S. Robbins, A. Jemal, CA: a cancer journal for clinicians 64 (2014) 252-271.
[2] H. Koo, M.S. Huh, I.-C. Sun, S.H. Yuk, K. Choi, K. Kim, I.C. Kwon, Accounts of chemical research 44 (2011) 1018-1028.
[3] J.K. Willmann, N. Van Bruggen, L.M. Dinkelborg, S.S. Gambhir, Nature reviews. Drug discovery 7 (2008) 591.
[4] J. Nicolas, S. Mura, D. Brambilla, N. Mackiewicz, P. Couvreur, Chemical Society Reviews 42 (2013) 1147-1235.
[5] C. Li, Nature Materials 13 (2014) 110-115.
[6] L. Xing, N.W. Todd, L. Yu, H. Fang, F. Jiang, Modern Pathology 23 (2010) 1157.
[7] Y.-E. Choi, J.-W. Kwak, J.W. Park, Sensors 10 (2010) 428-455.
[8] S.S. Lucky, K.C. Soo, Y. Zhang, Chemical reviews 115 (2015) 1990-2042.
[9] L. Zou, H. Wang, B. He, L. Zeng, T. Tan, H. Cao, X. He, Z. Zhang, S. Guo, Y. Li, Theranostics 6 (2016) 762.
[10] W. Zhang, J. Shen, H. Su, G. Mu, J.-H. Sun, C.-P. Tan, X.-J. Liang, L.-N. Ji, Z.-W. Mao, ACS applied materials & interfaces 8 (2016) 13332-13340.
[11] A.B. Chinen, C.M. Guan, J.R. Ferrer, S.N. Barnaby, T.J. Merkel, C.A. Mirkin, Chemical reviews 115 (2015) 10530-10574.
[12] W.M. Girma, M.Z. Fahmi, A. Permadi, M.A. Abate, J.-Y. Chang, Journal of materials chemistry B 5 (2017) 6193-6216.
[13] G. Xu, S. Mahajan, I. Roy, K.-T. Yong, Frontiers in pharmacology 4 (2013) 140.
[14] K.-T. Yong, I. Roy, R. Hu, H. Ding, H. Cai, J. Zhu, X. Zhang, E.J. Bergey, P.N. Prasad, Integrative biology 2 (2010) 121-129.
[15] P. Wu, X.-P. Yan, Chemical society reviews 42 (2013) 5489-5521.
[16] J.-C. Hsu, C.-C. Huang, K.-L. Ou, N. Lu, F.-D. Mai, J.-K. Chen, J.-Y. Chang, Journal of materials chemistry 21 (2011) 19257-19266.
[17] P. Zrazhevskiy, M. Sena, X. Gao, Chemical Society Reviews 39 (2010) 4326-4354.
[18] V. Biju, T. Itoh, M. Ishikawa, Chemical society reviews 39 (2010) 3031-3056.
[19] J. Zhao, J.A. Bardecker, A.M. Munro, M.S. Liu, Y. Niu, I.K. Ding, J. Luo, B. Chen, A.K.Y. Jen, D.S. Ginger, Nano letters 6 (2006) 463-467.
[20] A. Aboulaich, M. Michalska, R. Schneider, A. Potdevin, J. Deschamps, R. Deloncle, G. Chadeyron, R. Mahiou, ACS applied materials & interfaces 6 (2014) 252-258.
[21] B. Chen, Q. Zhou, J. Li, F. Zhang, R. Liu, H. Zhong, B. Zou, Optics express 21 (2013) 10105-10110.
[22] Z. Bai, W. Ji, D. Han, L. Chen, B. Chen, H. Shen, B. Zou, H. Zhong, Chemistry of materials 28 (2016) 1085-1091.
[23] P.-H. Chuang, C.C. Lin, R.-S. Liu, ACS Applied materials & interfaces 6 (2014) 15379-15387.
[24] I. Robel, V. Subramanian, M. Kuno, P.V. Kamat, Journal of the American chemical society 128 (2006) 2385-2393.
[25] I.L. Medintz, H.T. Uyeda, E.R. Goldman, H. Mattoussi, Nature Materials 4 (2005) 435-446.
[26] L. Li, T.J. Daou, I. Texier, T.T. Kim Chi, N.Q. Liem, P. Reiss, Chemistry of materials 21 (2009) 2422-2429.
[27] Z. Lin, X. Fei, Q. Ma, X. Gao, X. Su, New journal of chemistry 38 (2014) 90-96.
[28] L. Jeong Yu, N. Dong Heon, O. Mi Hwa, K. Youngsun, C. Hyung Seok, J. Duk Young, P. Chan Beum, N. Yoon Sung, Nanotechnology 25 (2014) 175702.
[29] P. Reiss, M. Protière, L. Li, Small 5 (2009) 154-168.
[30] Z. Chen, S. O’Brien, ACS Nano 2 (2008) 1219-1229.
[31] Y. Gai, H. Peng, J. Li, The Journal of physical chemistry C 113 (2009) 21506-21511.
[32] L.E. Brus, The Journal of chemical physics 80 (1984) 4403-4409.
[33] L. Brus, The Journal of physical chemistry 90 (1986) 2555-2560.
[34] A.M. Smith, S. Nie, Analyst 129 (2004) 672-677.
[35] H. Zhong, Z. Bai, B. Zou, The Journal of physical chemistry letters 3 (2012) 3167-3175.
[36] H.Y. Ueng, H.L. Hwang, Journal of physics and chemistry of solids 50 (1989) 1297-1305.
[37] J.E. Jaffe, A. Zunger, Physical Review B 29 (1984) 1882-1906.
[38] J. Shay, B. Tell, L. Schiavone, H. Kasper, F. Thiel, Physical Review B 9 (1974) 1719.
[39] K. Koitabashi, S. Ozaki, S. Adachi, Journal of applied physics 107 (2010) 3516.
[40] W. Yue, S. Han, R. Peng, W. Shen, H. Geng, F. Wu, S. Tao, M. Wang, Journal of materials chemistry 20 (2010) 7570-7578.
[41] L. Li, A. Pandey, D.J. Werder, B.P. Khanal, J.M. Pietryga, V.I. Klimov, Journal of the American chemical society 133 (2011) 1176-1179.
[42] M.D. Regulacio, K.Y. Win, S.L. Lo, S.-Y. Zhang, X. Zhang, S. Wang, M.-Y. Han, Y. Zheng, Nanoscale 5 (2013) 2322-2327.
[43] D. Deng, L. Qu, Y. Gu, Journal of materials chemistry C 2 (2014) 7077-7085.
[44] X. Kang, Y. Yang, L. Wang, S. Wei, D. Pan, ACS applied materials &interfaces 7 (2015) 27713-27719.
[45] H. Zhong, Y. Zhou, M. Ye, Y. He, J. Ye, C. He, C. Yang, Y. Li, Chemistry of materials 20 (2008) 6434-6443.
[46] B. Chen, H. Zhong, W. Zhang, Z.a. Tan, Y. Li, C. Yu, T. Zhai, Y. Bando, S. Yang, B. Zou, Advanced functional materials 22 (2012) 2081-2088.
[47] M. Uehara, K. Watanabe, Y. Tajiri, H. Nakamura, H. Maeda, The Journal of chemical physics 129 (2008) 134709.
[48] M. Dai, S. Ogawa, T. Kameyama, K.-i. Okazaki, A. Kudo, S. Kuwabata, Y. Tsuboi, T. Torimoto, Journal of materials chemistry 22 (2012) 12851-12858.
[49] D. Deng, L. Qu, J. Zhang, Y. Ma, Y. Gu, ACS applied materials interfaces 5 (2013) 10858-10865.
[50] J.-Y. Chang, G.-Q. Wang, C.-Y. Cheng, W.-X. Lin, J.-C. Hsu, Journal of materials chemistry 22 (2012) 10609-10618.
[51] D.H. Jara, K.G. Stamplecoskie, P.V. Kamat, The Journal of physical chemistry letters (2016).
[52] A.M. Smith, A.M. Mohs, S. Nie, Nature nanotecnolgy 4 (2009) 56-63.
[53] Q. Zeng, X. Kong, Y. Sun, Y. Zhang, L. Tu, J. Zhao, H. Zhang, The Journal of physical chemistry C 112 (2008) 8587-8593.
[54] S. Kim, B. Fisher, H.-J. Eisler, M. Bawendi, Journal of the american chemical society 125 (2003) 11466-11467.
[55] W.-C. Law, K.-T. Yong, I. Roy, H. Ding, R. Hu, W. Zhao, P.N. Prasad, Small 5 (2009) 1302-1310.
[56] H. Zhu, N. Song, T. Lian, Journal of the american chemical society 132 (2010) 15038-15045.
[57] D.V. Talapin, A.L. Rogach, A. Kornowski, M. Haase, H. Weller, Nano letters 1 (2001) 207-211.
[58] D.H. Jara, K.G. Stamplecoskie, P.V. Kamat, The journal of physical chemistry letters 7 (2016) 1452-1459.
[59] X. Fang, Y. Bando, G. Shen, C. Ye, U.K. Gautam, P.M. Costa, C. Zhi, C. Tang, D. Golberg, Advanced materials 19 (2007) 2593-2596.
[60] R. Xie, M. Rutherford, X. Peng, Journal of the american chemical society 131 (2009) 5691-5697.
[61] V. Bachmann, C. Ronda, and A. Meijerin, Chemistry of materials 21 (2009) 2077.
[62] H. Nakamura, W. Kato, M. Uehara, K. Nose, T. Omata, S. Otsuka-Yao-Matsuo, M. Miyazaki, H. Maeda, Chemistry of materials 18 (2006) 3330-3335.
[63] X. Kang, Y. Yang, L. Huang, Y. Tao, L. Wang, D. Pan, Green chemistry 17 (2015) 4482-4488.
[64] B. Mao, C.-H. Chuang, F. Lu, L. Sang, J. Zhu, C. Burda, The Journal of physical chemistry C 117 (2012) 648-656.
[65] D. Che, X. Zhu, H. Wang, Y. Duan, Q. Zhang, Y. Li, Journal of colloid and interface science 463 (2016) 1-7.
[66] C.B. Murray, D.J. Norris, M.G. Bawendi, Journal of the american chemical society 115 (1993) 8706-8715.
[67] C.B.M. and, C.R. Kagan, M.G. Bawendi, Annual review of materials science 30 (2000) 545-610.
[68] J. Park, J. Joo, S.G. Kwon, Y. Jang, T. Hyeon, Angewandte chemie international edition 46 (2007) 4630-4660.
[69] D. Pan, L. An, Z. Sun, W. Hou, Y. Yang, Z. Yang, Y. Lu, Journal of the american chemical society 130 (2008) 5620-5621.
[70] R.P. Raffaelle, S.L. Castro, A.F. Hepp, S.G. Bailey, Progress in photovoltaics: research and applications 10 (2002) 433-439.
[71] S. Liu, H. Zhang, Y. Qiao, X. Su, RSC advances 2 (2012) 819-825.
[72] S.L. Castro, S.G. Bailey, R.P. Raffaelle, K.K. Banger, A.F. Hepp, Chemistry of Materials 15 (2003) 3142-3147.
[73] S.L. Castro, S.G. Bailey, R.P. Raffaelle, K.K. Banger, A.F. Hepp, The Journal of physical chemistry B 108 (2004) 12429-12435.
[74] M.G. Panthani, V. Akhavan, B. Goodfellow, J.P. Schmidtke, L. Dunn, A. Dodabalapur, P.F. Barbara, B.A. Korgel, Journal of the american chemical society 130 (2008) 16770-16777.
[75] H. Zhong, S.S. Lo, T. Mirkovic, Y. Li, Y. Ding, Y. Li, G.D. Scholes, ACS Nano 4 (2010) 5253-5262.
[76] A. Lefrançois, S. Pouget, L. Vaure, M. Lopez-Haro, P. Reiss, Chemical physical chemistry 17 (2016) 654-659.
[77] J.J. Nairn, P.J. Shapiro, B. Twamley, T. Pounds, R. von Wandruszka, T.R. Fletcher, M. Williams, C. Wang, M.G. Norton, Nano letters 6 (2006) 1218-1223.
[78] V.K. LaMer, R.H. Dinegar, Journal of the american chemical society 72 (1950) 4847-4854.
[79] M.A. Hines, P. Guyot-Sionnest, The Journal of physical chemistry B 102 (1998) 3655-3657.
[80] L.S. Li, N. Pradhan, Y. Wang, X. Peng, Nano letters 4 (2004) 2261-2264.
[81] M.A. Hines, G.D. Scholes, Advanced materials 15 (2003) 1844-1849.
[82] A. Lipovskii, E. Kolobkova, V. Petrikov, I. Kang, A. Olkhovets, T. Krauss, M. Thomas, J. Silcox, F. Wise, Q. Shen, Applied physics letters 71 (1997) 3406-3408.
[83] J.M. Pietryga, R.D. Schaller, D. Werder, M.H. Stewart, V.I. Klimov, J.A. Hollingsworth, Journal of the american chemical society 126 (2004) 11752-11753.
[84] W. Lu, J. Fang, K.L. Stokes, J. Lin, Journal of the american chemical society 126 (2004) 11798-11799.
[85] J.J. Urban, D.V. Talapin, E.V. Shevchenko, C.B. Murray, Journal of the american chemical society 128 (2006) 3248-3255.
[86] R. Xie, M. Rutherford, X. Peng, Journal of the american chemical society 131 (2009) 5691-5697.
[87] J. Park, S.-W. Kim, Journal of materials chemistry 21 (2011) 3745-3750.
[88] H. Kim, J.Y. Han, D.S. Kang, S.W. Kim, D.S. Jang, M. Suh, A. Kirakosyan, D.Y. Jeon, Journal of crystal growth 326 (2011) 90-93.
[89] P.M. Allen, M.G. Bawendi, Journal of the american chemical society 130 (2008) 9240-9241.
[90] J. Park, S.-W. Kim, Journal of materials chemistry 21 (2011) 3745-3750.
[91] P.M. Allen, M.G. Bawendi, Journal of the american chemical society 130 (2008) 9240-9241.
[92] J. Park, C. Dvoracek, K.H. Lee, J.F. Galloway, H.-e.C. Bhang, M.G. Pomper, P.C. Searson, Small 7 (2011) 3148-3152.
[93] O. Yarema, D. Bozyigit, I. Rousseau, L. Nowack, M. Yarema, W. Heiss, V. Wood, Chemistry of materials 25 (2013) 3753-3757.
[94] W. Xiang, C. Xie, J. Wang, J. Zhong, X. Liang, H. Yang, L. Luo, Z. Chen, Journal of alloys and compounds 588 (2014) 114-121.
[95] T. Torimoto, S. Ogawa, T. Adachi, T. Kameyama, K. Okazaki, T. Shibayama, A. Kudo, S. Kuwabata, Chemical Communication 46 (2010) 2082-2084.
[96] J.-Y. Chang, G.-Q. Wang, C.-Y. Cheng, W.-X. Lin, J.-C. Hsu, Journal of materials chemistry 22 (2012) 10609-10618.
[97] Y.C. Cao, J. Wang, Journal of the american chemical society 126 (2004) 14336-14337.
[98] C. Xia, L. Cao, W. Liu, G. Su, R. Gao, H. Qu, L. Shi, G. He, CrystEngComm 16 (2014) 7469-7477.
[99] W. Zhang, X. Zhong, Inorganic chemistry 50 (2011) 4065-4072.
[100] C. Xia, L. Cao, W. Liu, G. Su, R. Gao, H. Qu, L. Shi, G. He, CrystEngComm 16 (2014) 7469-7477.
[101] M. Dai, S. Ogawa, T. Kameyama, K.-i. Okazaki, A. Kudo, S. Kuwabata, Y. Tsuboi, T. Torimoto, Journal of materialschemistry 22 (2012) 12851.
[102] T. Kameyama, Y. Douke, H. Shibakawa, M. Kawaraya, H. Segawa, S. Kuwabata, T. Torimoto, The Journal of physical chemistry C 118 (2014) 29517-29524.
[103] M. Ko, H.C. Yoon, H. Yoo, J.H. Oh, H. Yang, Y.R. Do, Advanced functional materials 27 (2017).
[104] R.I. Walton, Chemical society reviews 31 (2002) 230-238.
[105] H. Chen, S.-M. Yu, D.-W. Shin, J.-B. Yoo, Nanoscale research letters 5 (2009) 217-223.
[106] W.-C. Huang, C.-H. Tseng, S.-H. Chang, H.-Y. Tuan, C.-C. Chiang, L.-M. Lyu, M.H. Huang, Langmuir 28 (2012) 8496-8501.
[107] K.-C. Cheng, W.-C. Law, K.-T. Yong, J.S. Nevins, D.F. Watson, H.-P. Ho, P.N. Prasad, Chemical physics letters 515 (2011) 254-257.
[108] X. Tang, K. Yu, Q. Xu, E.S.G. Choo, G.K.L. Goh, J. Xue, Journal of materials chemistry 21 (2011) 11239.
[109] W. Chung, H. Jung, C.H. Lee, S.H. Kim, Journal of materials chemistry C 2 (2014) 4227.
[110] L. Tian, M.T. Ng, N. Venkatram, W. Ji, J.J. Vittal, Crystal growth & design 10 (2010) 1237-1242.
[111] D. Yao, H. Liu, Y. Liu, C. Dong, K. Zhang, Y. Sheng, J. Cui, H. Zhang, B. Yang, Nanoscale 7 (2015) 18570-18578.
[112] H.C. Yoon, J.H. Oh, M. Ko, H. Yoo, Y.R. Do, ACS applied materials interfaces 7 (2015) 7342-7350.
[113] Y. Hamanaka, T. Ogawa, M. Tsuzuki, T. Kuzuya, The Journal of physical chemistry C 115 (2011) 1786-1792.
[114] M.Z. Fahmi, J.Y. Chang, Nanoscale 5 (2013) 1517-1528.
[115] D.-E. Nam, W.-S. Song, H. Yang, Journal of materials chemistry 21 (2011) 18220-18226.
[116] W.-W. Xiong, G.-H. Yang, X.-C. Wu, J.-J. Zhu, ACS applied materials & interfaces 5 (2013) 8210-8216.
[117] Y. Chen, S. Li, L. Huang, D. Pan, Inorganic chemistry 52 (2013) 7819-7821.
[118] X. Gao, Z. Liu, Z. Lin, X. Su, Analyst 139 (2014) 831-836.
[119] J. Weng, X. Song, L. Li, H. Qian, K. Chen, X. Xu, C. Cao, J. Ren, Talanta 70 (2006) 397-402.
[120] C. Wang, X. Gao, X. Su, Analytical and bioanalytical chemistry 397 (2010) 1397-1415.
[121] A.L. Rogach, L. Katsikas, A. Kornowski, D. Su, A. Eychmüller, H. Weller, Berichte der bunsengesellschaft für physikalische chemie 100 (1996) 1772-1778.
[122] Z. Luo, H. Zhang, J. Huang, X. Zhong, Journal of colloid interface Sci 377 (2012) 27-33.
[123] P. Subramaniam, S.J. Lee, S. Shah, S. Patel, V. Starovoytov, K.B. Lee, Advanced materials 24 (2012) 4014-4019.
[124] M.D. Regulacio, K.Y. Win, S.L. Lo, S.Y. Zhang, X. Zhang, S. Wang, M.Y. Han, Y. Zheng, Nanoscale 5 (2013) 2322-2327.
[125] D. Deng, J. Cao, L. Qu, S. Achilefu, Y. Gu, Physical chemistry chemical physics 15 (2013) 5078-5083.
[126] J. Song, T. Jiang, T. Guo, L. Liu, H. Wang, T. Xia, W. Zhang, X. Ye, M. Yang, L. Zhu, R. Xia, X. Xu, Inorganic chemistry 54 (2015) 1627-1633.
[127] J.S. Gardner, E. Shurdha, C. Wang, L.D. Lau, R.G. Rodriguez, J.J. Pak, Journal of nanoparticle research 10 (2008) 633-641.
[128] C.-C. Wu, C.-Y. Shiau, D.W. Ayele, W.-N. Su, M.-Y. Cheng, C.-Y. Chiu, B.-J. Hwang, Chemistry of materials 22 (2010) 4185-4190.
[129] R. Hoogenboom, U.S. Schubert, Macromolecular rapid communications 28 (2007) 368-386.
[130] H. Bux, F. Liang, Y. Li, J. Cravillon, M. Wiebcke, J.r. Caro, Journal of the american chemical society 131 (2009) 16000-16001.
[131] J.M. Collins, N.E. Leadbeater, Organic & biomolecular chemistry 5 (2007) 1141-1150.
[132] W.-W. Xiong, G.-H. Yang, X.-C. Wu, J.-J. Zhu, Journal of materials chemistry B 1 (2013) 4160.
[133] M. Mousavi-Kamazani, M. Salavati-Niasari, Composites part B: engineering 56 (2014) 490-496.
[134] J.-Y. Chang, G.-R. Chen, J.-D. Li, Physical chemistry chemical physics 18 (2016) 7132-7140.
[135] T. Jamieson, R. Bakhshi, D. Petrova, R. Pocock, M. Imani, A.M. Seifalian, Biomaterials 28 (2007) 4717-4732.
[136] Z. Luo, H. Zhang, J. Huang, X. Zhong, Journal of colloid and interface science 377 (2012) 27-33.
[137] C. Zhao, Z. Bai, X. Liu, Y. Zhang, B. Zou, H. Zhong, ACS applied materials & interfaces 7 (2015) 17623-17629.
[138] D.M. Willard, L.L. Carillo, J. Jung, A. Van Orden, Nano letters 1 (2001) 469-474.
[139] H. Mattoussi, J.M. Mauro, E.R. Goldman, G.P. Anderson, V.C. Sundar, F.V. Mikulec, M.G. Bawendi, Journal of the american chemical society 122 (2000) 12142-12150.
[140] G.P. Mitchell, C.A. Mirkin, R.L. Letsinger, Journal of the american chemical society 121 (1999) 8122-8123.
[141] R. Hong, N.O. Fischer, A. Verma, C.M. Goodman, T. Emrick, V.M. Rotello, Journal of the american chemical society 126 (2004) 739-743.
[142] A.R. Clapp, I.L. Medintz, H. Mattoussi, Chemical physics and chemistry 7 (2006) 47-57.
[143] K.E. Sapsford, L. Berti, I.L. Medintz, Angewandte chemie international edition 45 (2006) 4562-4589.
[144] A.R. Clapp, E.R. Goldman, H. Mattoussi, Nature protocols 1 (2006) 1258-1266.
[145] J.K. Jaiswal, E.R. Goldman, H. Mattoussi, S.M. Simon, Nature materials 1 (2004) 73-78.
[146] W. Liu, H.S. Choi, J.P. Zimmer, E. Tanaka, J.V. Frangioni, M. Bawendi, Journal of the american chemical society 129 (2007) 14530-14531.
[147] H.T. Uyeda, I.L. Medintz, J.K. Jaiswal, S.M. Simon, H. Mattoussi, Journal of the american chemical society 127 (2005) 3870-3878.
[148] K. Susumu, H.T. Uyeda, I.L. Medintz, T. Pons, J.B. Delehanty, H. Mattoussi, Journal of the american chemical society 129 (2007) 13987-13996.
[149] T. Pons, H.T. Uyeda, I.L. Medintz, H. Mattoussi, The Journal of physical chemistry B 110 (2006) 20308-20316.
[150] J.P. Zimmer, S.-W. Kim, S. Ohnishi, E. Tanaka, J.V. Frangioni, M.G. Bawendi, Journal of the american chemical society 128 (2006) 2526-2527.
[151] W. Liu, M. Howarth, A.B. Greytak, Y. Zheng, D.G. Nocera, A.Y. Ting, M.G. Bawendi, Journal of the american chemical society 130 (2008) 1274-1284.
[152] P. Subramaniam, S.J. Lee, S. Shah, S. Patel, V. Starovoytov, K.-B. Lee, Advanced materials 24 (2012) 4014-4019.
[153] S.H. Bhang, N. Won, T.-J. Lee, H. Jin, J. Nam, J. Park, H. Chung, H.-S. Park, Y.-E. Sung, S.K. Hahn, B.-S. Kim, S. Kim, ACS nano 3 (2009) 1389-1398.
[154] Y. Chen, R. Thakar, P.T. Snee, Journal of the american chemical society 130 (2008) 3744-3745.
[155] X. Gao, Y. Cui, R.M. Levenson, L.W.K. Chung, S. Nie, Nature biotechnology 22 (2004) 969-976.
[156] I. Geissbuehler, R. Hovius, K.L. Martinez, M. Adrian, K.R. Thampi, H. Vogel, Angewandte chemie international edition 44 (2005) 1388-1392.
[157] O. Carion, B. Mahler, T. Pons, B. Dubertret, Nature protocols 2 (2007) 2383-2390.
[158] D. Gerion, F. Pinaud, S.C. Williams, W.J. Parak, D. Zanchet, S. Weiss, A.P. Alivisatos, The Journal of physical chemistry B 105 (2001) 8861-8871.
[159] W. Guo, J.J. Li, Y.A. Wang, X. Peng, Chemistry of materials 15 (2003) 3125-3133.
[160] F. Osaki, T. Kanamori, S. Sando, T. Sera, Y. Aoyama, Journal of the american chemical society 126 (2004) 6520-6521.
[161] T. Pellegrino, L. Manna, S. Kudera, T. Liedl, D. Koktysh, A.L. Rogach, S. Keller, J. Rädler, G. Natile, W.J. Parak, Nano letters 4 (2004) 703-707.
[162] E.S. Speranskaya, C. Sevrin, S. De Saeger, Z. Hens, I. Goryacheva, C. Grandfils, ACS applied materials & interfaces (2016).
[163] M.D. Regulacio, K.Y. Win, S.L. Lo, S.-Y. Zhang, X. Zhang, S. Wang, M.-Y. Han, Y. Zheng, Nanoscale 5 (2013) 2322-2327.
[164] S. Kim, M.G. Bawendi, Journal of the american chemical society 125 (2003) 14652-14653.
[165] J.M. Slocik, J.T. Moore, D.W. Wright, Nano letters 2 (2002) 169-173.
[166] F. Pinaud, D. King, H.-P. Moore, S. Weiss, Journal of the american chemical society 126 (2004) 6115-6123.
[167] M.Z. Fahmi, J.-Y. Chang, Nanoscale 5 (2013) 1517-1528.
[168] L. Liu, R. Hu, W.-C. Law, I. Roy, J. Zhu, L. Ye, S. Hu, X. Zhang, K.-T. Yong, Analyst 138 (2013) 6144-6153.
[169] X. Tang, K. Yu, Q. Xu, E.S.G. Choo, G.K.L. Goh, J. Xue, Journal of materials chemistry 21 (2011) 11239-11243.
[170] D. Deng, L. Qu, J. Zhang, Y. Ma, Y. Gu, ACS Applied materials & interfaces 5 (2013) 10858-10865.
[171] M.F. Foda, L. Huang, F. Shao, H.-Y. Han, ACS applied materials & interfaces 6 (2014) 2011-2017.
[172] Y. Sheng, X. Tang, J. Xue, Journal of materials chemistry 22 (2012) 1290-1296.
[173] M.Z. Fahmi, K.-L. Ou, J.-K. Chen, M.-H. Ho, S.-H. Tzing, J.-Y. Chang, RSC advances 4 (2014) 32762-32772.
[174] N. Erathodiyil, J.Y. Ying, Accounts of chemical research 44 (2011) 925-935.
[175] M. Wang, X. Liu, C. Cao, L. Wang, Journal of materials chemistry 22 (2012) 21979-21986.
[176] P. Caravan, J.J. Ellison, T.J. McMurry, R.B. Lauffer, Chemical reviews 99 (1999) 2293-2352.
[177] M. Kueny‐Stotz, A. Garofalo, D. Felder‐Flesch, European journal of inorganic chemistry 2012 (2012) 1987-2005.
[178] W. Yang, W. Guo, X. Gong, B. Zhang, S. Wang, N. Chen, W. Yang, Y. Tu, X. Fang, J. Chang, ACS applied materials & interfaces 7 (2015) 18759-18768.
[179] P.-Y. Lai, C.-C. Huang, T.-H. Chou, K.-L. Ou, J.-Y. Chang, Acta biomaterialia 50 (2017) 522-533.
[180] R. Qiao, C. Yang, M. Gao, Journal of materials chemistry 19 (2009) 6274-6293.
[181] L. Jing, K. Ding, S.V. Kershaw, I.M. Kempson, A.L. Rogach, M. Gao, Advanced materials 26 (2014) 6367-6386.
[182] F. Hu, Y.S. Zhao, Nanoscale 4 (2012) 6235-6243.
[183] B. Lin, X. Yao, Y. Zhu, J. Shen, X. Yang, H. Jiang, X. Zhang, New journal of chemistry 37 (2013) 3076-3083.
[184] J. Shen, Y. Li, Y. Zhu, X. Yang, X. Yao, J. Li, G. Huang, C. Li, Journal of materials chemistry B 3 (2015) 2873-2882.
[185] C.-Y. Cheng, K.-L. Ou, W.-T. Huang, J.-K. Chen, J.-Y. Chang, C.-H. Yang, ACS applied materials & interfaces 5 (2013) 4389-4400.
[186] A.O. Elzoghby, W.M. Samy, N.A. Elgindy, Journal controlled release 157 (2012) 168-182.
[187] D. Jaque, L.M. Maestro, B. Del Rosal, P. Haro-Gonzalez, A. Benayas, J. Plaza, E.M. Rodriguez, J.G. Sole, Nanoscale 6 (2014) 9494-9530.
[188] A. Kumar, S. Kumar, W.-K. Rhim, G.-H. Kim, J.-M. Nam, Journal of the american chemical society 136 (2014) 16317-16325.
[189] J. Lin, M. Wang, H. Hu, X. Yang, B. Wen, Z. Wang, O. Jacobson, J. Song, G. Zhang, G. Niu, Advanced materials (2016).
[190] S. Wang, A. Riedinger, H. Li, C. Fu, H. Liu, L. Li, T. Liu, L. Tan, M.J. Barthel, G. Pugliese, Acs nano 9 (2015) 1788-1800.
[191] Y. Li, W. Lu, Q. Huang, C. Li, W. Chen, Nanomedicine 5 (2010) 1161-1171.
[192] T.A. Larson, J. Bankson, J. Aaron, K. Sokolov, Nanotechnology 18 (2007) 325101.
[193] J. Liu, X. Zheng, L. Yan, L. Zhou, G. Tian, W. Yin, L. Wang, Y. Liu, Z. Hu, Z. Gu, C. Chen, Y. Zhao, ACS Nano 9 (2015) 696-707.
[194] Y. Yong, X. Cheng, T. Bao, M. Zu, L. Yan, W. Yin, C. Ge, D. Wang, Z. Gu, Y. Zhao, ACS nano 9 (2015) 12451-12463.
[195] K. Yang, H. Xu, L. Cheng, C. Sun, J. Wang, Z. Liu, Advanced materials 24 (2012) 5586-5592.
[196] L. Cheng, W. He, H. Gong, C. Wang, Q. Chen, Z. Cheng, Z. Liu, Advanced functional materials 23 (2013) 5893-5902.
[197] Y. Yang, J. Liu, C. Liang, L. Feng, T. Fu, Z. Dong, Y. Chao, Y. Li, G. Lu, M. Chen, ACS nano 10 (2016) 2774-2781.
[198] Z. Liu, X.-J. Liang, Theranostics 2 (2012) 235-237.
[199] Q. Wu, M. Chu, Y. Shao, F. Wo, D. Shi, Carbon 108 (2016) 21-37.
[200] S. Ghosh, T. Avellini, A. Petrelli, I. Kriegel, R. Gaspari, G. Almeida, G. Bertoni, A. Cavalli, F. Scotognella, T. Pellegrino, Chemistry of materials 28 (2016) 4848-4858.
[201] G. Lv, W. Guo, W. Zhang, T. Zhang, S. Li, S. Chen, A.S. Eltahan, D. Wang, Y. Wang, J. Zhang, ACS nano 10 (2016) 9637-9645.
[202] S.S. Lucky, K.C. Soo, Y. Zhang, Chemical review 115 (2015) 1990-2042.
[203] J. Shi, P.W. Kantoff, R. Wooster, O.C. Farokhzad, Nature reviews cancer 17 (2017) 20-37.
[204] X. Yi, K. Yang, C. Liang, X. Zhong, P. Ning, G. Song, D. Wang, C. Ge, C. Chen, Z. Chai, Z. Liu, Advanced functional materials 25 (2015) 4689-4699.
[205] W. Yang, W. Guo, W. Le, G. Lv, F. Zhang, L. Shi, X. Wang, J. Wang, S. Wang, J. Chang, ACS nano 10 (2016) 10245-10257.
[206] V. Shanmugam, S. Selvakumar, C.-S. Yeh, Chemical society reviews 43 (2014) 6254-6287.
[207] Y. Ma, X. Liang, S. Tong, G. Bao, Q. Ren, Z. Dai, Advanced functional materials 23 (2013) 815-822.
[208] S.H. Hu, R.H. Fang, Y.W. Chen, B.J. Liao, I.W. Chen, S.Y. Chen, Advanced functional materials 24 (2014) 4144-4155.
[209] M. Sun, D. Peng, H. Hao, J. Hu, D. Wang, K. Wang, J. Liu, X. Guo, Y. Wei, W. Gao, ACS applied materials & interfaces 9 (2017) 10453-10460.
[210] R. Liu, L. Jing, D. Peng, Y. Li, J. Tian, Z. Dai, Theranostics 5 (2015) 1144.
[211] M. Zhou, R. Zhang, M. Huang, W. Lu, S. Song, M.P. Melancon, M. Tian, D. Liang, C. Li, Journal of the american chemical society 132 (2010) 15351.
[212] Q. Tian, F. Jiang, R. Zou, Q. Liu, Z. Chen, M. Zhu, S. Yang, J. Wang, J. Wang, J. Hu, ACS Nano 5 (2011) 9761-9771.
[213] W. Chen, X. Zhang, F. Ai, X. Yang, G. Zhu, F. Wang, Inorganic chemistry 55 (2016) 5750-5752.
[214] B. Zhou, Y. Li, G. Niu, M. Lan, Q. Jia, Q. Liang, ACS Applied materials & interfaces 8 (2016) 29899-29905.
[215] Z. Wang, P. Huang, O. Jacobson, Z. Wang, Y. Liu, L. Lin, J. Lin, N. Lu, H. Zhang, R. Tian, ACS nano 10 (2016) 3453.
[216] J. Bai, X. Jia, Z. Ma, X. Jiang, X. Sun, Nanoscale 8 (2016) 5260-5267.
[217] R. Weissleder, M.J. Pittet, Nature 452 (2008) 580-589.
[218] X. Yao, X. Niu, K. Ma, P. Huang, J. Grothe, S. Kaskel, Y. Zhu, Small 13 (2017) 1602225-n/a.
[219] X. Cai, X. Jia, W. Gao, K. Zhang, M. Ma, S. Wang, Y. Zheng, J. Shi, H. Chen, Advanced functional materials 25 (2015) 2520-2529.
[220] L. Jing, Theranostics 6 (2016) 40.
[221] J. Peng, T. Qi, J. Liao, B. Chu, Q. Yang, Y. Qu, W. Li, H. Li, F. Luo, Z. Qian, Theranostics 4 (2014) 678.
[222] J. Kolny-Olesiak, H. Weller, ACS applied materials & interfaces 5 (2013) 12221-12237.
[223] T. Torimoto, T. Kameyama, S. Kuwabata, The journal of physical chemistry letters 5 (2014) 336-347.
[224] W.M. Girma, M.Z. Fahmi, A. Permadi, M.A. Abate, J.-Y. Chang, Journal of materials chemistry B 5 (2017) 6193-6216.
[225] C. Coughlan, M. Ibáñez, O. Dobrozhan, A. Singh, A. Cabot, K.M. Ryan, Chemical reviews 117 (2017) 5865-6109.
[226] H. Xie, X. Su, G. Zheng, T. Zhu, K. Yin, Y. Yan, C. Uher, M.G. Kanatzidis, X. Tang, Advanced energy materials 7 (2017).
[227] T. Teranishi, Journal of the physical society of japan 16 (1961) 1881-1887.
[228] I. Austin, C. Goodman, A. Pengelly, Journal of the electrochemical society 103 (1956) 609-610.
[229] D. Liang, R. Ma, S. Jiao, G. Pang, S. Feng, Nanoscale 4 (2012) 6265-6268.
[230] G. Gabka, P. Bujak, A. Ostrowski, W. Tomaszewski, W. Lisowski, J.W. Sobczak, A. Pron, Inorganic chemistry 55 (2016) 6660-6669.
[231] Y. Wu, B. Zhou, C. Yang, S. Liao, W.-H. Zhang, C. Li, Chemical Communications 52 (2016) 11488-11491.
[232] B. Bhattacharyya, A. Pandey, Journal of the american chemical society 138 (2016) 10207-10213.
[233] A. Ghahremaninezhad, D. Dixon, E. Asselin, Electrochimica acta 87 (2013) 97-112.
[234] D.K. Roper, W. Ahn, M. Hoepfner, The Journal of physical chemistry C 111 (2007) 3636-3641.
[235] Y. Liu, K. Ai, J. Liu, M. Deng, Y. He, L. Lu, Advanced materials 25 (2013) 1353-1359.
[236] C.M. Hessel, V.P. Pattani, M. Rasch, M.G. Panthani, B. Koo, J.W. Tunnell, B.A. Korgel, Nano letters 11 (2011) 2560-2566.
[237] Z. Sun, H. Xie, S. Tang, X.-F. Yu, Z. Guo, J. Shao, H. Zhang, H. Huang, H. Wang, P.K. Chu, Angewandte chemie 127 (2015) 11688-11692.
[238] B. Li, Q. Wang, R. Zou, X. Liu, K. Xu, W. Li, J. Hu, Nanoscale 6 (2014) 3274-3282.
[239] T.-P. Liu, S.-H. Wu, Y.-P. Chen, C.-M. Chou, C.-T. Chen, Nanoscale 7 (2015) 6471-6480.
[240] Y. Yuan, S. Ge, H. Sun, X. Dong, H. Zhao, L. An, J. Zhang, J. Wang, B. Hu, G. Liang, ACS nano 9 (2015) 5117-5124.
[241] L.I. Zon, R.T. Peterson, Nature reviews drug discovery 4 (2005) 35-44.
[242] R.O. Karlstrom, O.V. Tyurina, A. Kawakami, N. Nishioka, W.S. Talbot, H. Sasaki, A.F. Schier, Development 130 (2003) 1549-1564.
[243] W. Li, H. Zhang, X. Guo, Z. Wang, F. Kong, L. Luo, Q. Li, C. Zhu, J. Yang, Y. Lou, Y. Du, J. You, ACS applied materials & interfaces 9 (2017) 3354-3367.
[244] C. Fei Chin, D. Yuan Qiang Wong, R. Jothibasu, W. Han Ang, Current topics in medicinal chemistry 11 (2011) 2602-2612.
[245] Y. Jung, S.J. Lippard, Chemical reviews 107 (2007) 1387-1407.
[246] T. Feng, X. Ai, G. An, P. Yang, Y. Zhao, ACS nano 10 (2016) 4410-4420.
[247] S. He, Y. Cong, D. Zhou, J. Li, Z. Xie, X. Chen, X. Jing, Y. Huang, Journal of materials chemistry B 3 (2015) 8203-8211.
[248] H. Bi, Y. Dai, J. Xu, R. Lv, F. He, S. Gai, D. Yang, P. Yang, Journal of materials chemistry B 4 (2016) 5938-5946.
[249] K.R. Barnes, A. Kutikov, S.J. Lippard, Chemistry & biology 11 (2004) 557-564.
[250] H. Wu, H. Jin, C. Wang, Z. Zhang, H. Ruan, L. Sun, C. Yang, Y. Li, W. Qin, C. Wang, ACS applied materials & interfaces 9 (2017) 9426-9436.
[251] H. Kim, S. Kim, C. Park, H. Lee, H.J. Park, C. Kim, Advanced materials 22 (2010) 4280-4283.
[252] A. Verma, J.M. Simard, J.W. Worrall, V.M. Rotello, Journal of the american chemical society 126 (2004) 13987-13991.
[253] F. Meng, W.E. Hennink, Z. Zhong, Biomaterials 30 (2009) 2180-2198.
[254] F. Gao, L. Li, T. Liu, N. Hao, H. Liu, L. Tan, H. Li, X. Huang, B. Peng, C. Yan, Nanoscale 4 (2012) 3365-3372.
[255] S. He, Y. Cong, D. Zhou, J. Li, Z. Xie, X. Chen, X. Jing, Y. Huang, Journal of materials chemistry B 3 (2015) 8203-8211.
[256] S. Aryal, C.-M.J. Hu, L. Zhang, ACS nano 4 (2010) 251-258.
[257] K. Cheng, S. Peng, C. Xu, S. Sun, Journal of the american chemical society 131 (2009) 10637-10644.
[258] D. Ding, K. Li, Z. Zhu, K.-Y. Pu, Y. Hu, X. Jiang, B. Liu, Nanoscale 3 (2011) 1997-2002.
[259] L. Cheng, C. Wang, L. Feng, K. Yang, Z. Liu, Chemial review 114 (2014) 10869-10939.
[260] D. Jaque, L. Martinez Maestro, B. del Rosal, P. Haro-Gonzalez, A. Benayas, J.L. Plaza, E. Martin Rodriguez, J. Garcia Sole, Nanoscale 6 (2014) 9494-9530.
[261] B.P. Jiang, L.F. Hu, X.C. Shen, S.C. Ji, Z. Shi, C.J. Liu, L. Zhang, H. Liang, ACS Applied material interfaces 6 (2014) 18008-18017.
[262] P. Manivasagan, N. Quang Bui, S. Bharathiraja, M. Santha Moorthy, Y.O. Oh, K. Song, H. Seo, M. Yoon, J. Oh, Scitfic report 7 (2017) 43593.
[263] W.M. Girma, S.-H. Tzing, P.-J. Tseng, C.-C. Huang, Y.-C. Ling, J.-Y. Chang, ACS Applied materials & interfaces 10 (2018) 4590-4602.
[264] A.C. Samia, X. Chen, C. Burda, Journal of the american chemical society 125 (2003) 15736-15737.
[265]
[266] X. Tan, X. Pang, M. Lei, M. Ma, F. Guo, J. Wang, M. Yu, F. Tan, N. Li, International journal of Pharmaceutics 503 (2016) 220-228.
[267] F. Ai, Q. Ju, X. Zhang, X. Chen, F. Wang, G. Zhu, Scientific reports 5 (2015) srep10785.
[268] S. Gao, J. Wang, R. Tian, G. Wang, L. Zhang, Y. Li, L. Li, Q. Ma, L. Zhu, ACS applied materials & interfaces 9 (2017) 32509-32519.
[269] N.M. Idris, M.K.G. Jayakumar, A. Bansal, Y. Zhang, Chemical society reviews 44 (2015) 1449-1478.
[270] Y. Cai, P. Liang, Q. Tang, X. Yang, W. Si, W. Huang, Q. Zhang, X. Dong, ACS Nano 11 (2017) 1054-1063.
[271] Y. Li, Z. Liu, Y. Hou, G. Yang, X. Fei, H. Zhao, Y. Guo, C. Su, Z. Wang, H. Zhong, Z. Zhuang, Z. Guo, ACS applied materials & interfaces 9 (2017) 25098-25106.
[272] Q. Wu, M. Chu, Y. Shao, F. Wo, D. Shi, Carbon 108 (2016) 21-37.
[273] J. Peng, M. Dong, B. Ran, W. Li, Y. Hao, Q. Yang, L. Tan, K. Shi, Z. Qian, ACS applied material interfaces 9 (2017) 13875-13886.
[274] B. Jang, J.-Y. Park, C.-H. Tung, I.-H. Kim, Y. Choi, ACS Nano 5 (2011) 1086-1094.
[275] M. Yu, F. Guo, J. Wang, F. Tan, N. Li, ACS applied materials & interfaces 7 (2015) 17592-17597.
[276] Z. Yang, S. Luo, Y. Zeng, C. Shi, R. Li, ACS Applied material interfaces 9 (2017) 6839-6848.
[277] A. Bujacz, Acta crystallographica section D: biological crystallography 68 (2012) 1278-1289.
[278] H. Hu, H. Du, Journal of protein chemistry 19 (2000) 177-183.
[279] P. Kumar, S. Uma, R. Nagarajan, Chemical Communications 49 (2013) 7316-7318.
[280] L.I. Zon, R.T. Peterson, Nature review drug discovery 4 (2005) 35-44.

無法下載圖示 全文公開日期 2023/07/17 (校內網路)
全文公開日期 2033/07/17 (校外網路)
全文公開日期 2023/07/17 (國家圖書館:臺灣博碩士論文系統)
QR CODE