簡易檢索 / 詳目顯示

研究生: 黃鴻勛
HUNG-SHIUN HUANG
論文名稱: Pr0.7Sr0.3MnO3陰極材料應用於中溫型混合電位式NO2氣體感測器之研究
Pr0.7Sr0.3MnO3 Cathode Material Applied inMixed-Potential Type NO2 Gas Sensor for Intermediate Temperature
指導教授: 蕭敬業
Ching-Yeh Shiau
口試委員: 黃炳照
none
劉端祺
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 112
中文關鍵詞: 汽車廢氣二氧化氮感測器混合電位式鈣鈦礦結構
外文關鍵詞: exhaust, NO2, Sensor, Mixed-potential, Perovskite
相關次數: 點閱:253下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文旨在研究中低溫(500-700℃)型混合電位式NO2氣體感測器,研究重點在於陰極材料Pr0.7Sr0.3BO3 (B=Mn、Co、Cr、Fe)對感測NO2的影響。感測電極以sol-gel法製備奈米級粉末,再網印在YSZ電解質上。電極先藉由XRD、SEM和BET進行分析,再組裝成NO2感測元件進行分析。實驗變數包括:煆燒溫度、感測溫度、O2濃度、電極材料組成、電極濃度和感測氣體的體積流速。
由SEM和BET分析可知,煆燒溫度愈高會使得粒徑愈大且分佈愈不平均。由感測分析可知,Pr0.7Sr0.3MnO3電極感測低濃度NO2時應答電位與NO2濃度成線性,而感測高濃度時應答電位與NO2濃度的對數成線性,且其中以Pr0.7Sr0.3MnO3煆燒1100℃時對NO2之應答電位值最大而應答電位值會隨著O2濃度上升而下降,且與O2濃度之對數成反比;感測溫度上升會提高O2陽極以及NO2陰極反應的觸媒活性而使得應答電位下降;電極材料以Pr0.7Sr0.3CrO3之應答電位值最大,Pr0.7Sr0.3MnO3次之,但回復時間Pr0.7Sr0.3MnO3較快,整體而言,以Pr0.7Sr0.3MnO3之感測表現最好;不同電極濃度中,電極濃度愈稀時應答電位值會愈大;混合電位式氣體感測器之應答電位值會隨感測氣體的體積流速上升而增加。


The main objective of this study is to investigate mixed-potential type NO2 gas sensor for intermediate temperature (500-700℃). The study was focused on the sensing performance of different cathodic materials Pr0.7Sr0.3BO3 ( B = Mn、Co、Cr、Fe ). The sensing electrode was made by sol-gel method to form nano particles. The nano particles were then screen-printed on the YSZ electrolyte. The electrode was analyzed by SEM, BET, XRD and finally tested in the assembled NO2 sesnor. The experimental variables include calcined temperature, sensing temperature, gas concentration and flow rate, electrode concentration.
SEM and BET analyses showed that the particle size increased with increasing calcined temperature, and the particle size was not uniform at higher temperatures. Sensing performance analyses revealed that the sensing response was found to be linearly dependent on the NO2 concentration at lower concentrations and logarithmically dependent at higher concentrations. The response also decreased with increasing O2 concentration on a logarithmic scale. The electrode calcined at 1100℃ gave the highest response. The sensing response decreased with increasing sensing temperature, mainly due to the higher catalytic activities of both O2 anodic and NO2 cathodic reactions. Among all the electrodes investigated, Pr0.7Sr0.3CrO3 has the highest response, followed by Pr0.7Sr0.3MnO3. Nevertheless, the recovery time of Pr0.7Sr0.3MnO3 was faster than that of Pr0.7Sr0.3CrO3. In overall, Pr0.7Sr0.3MnO3 gave better sensing performance. The sensing response was also found to be increased with lower electrode concentration and higher sensing gas flow rate.

中文摘要………………………………………...Ⅰ 英文摘要………………………………………...Ⅱ 致謝……………………………………………...Ⅳ 目錄………………………………………….......Ⅴ 圖目錄……………………………………….......Ⅹ 表目錄……………………………………...ⅩⅤⅠ 符號說明…………………………………...ⅩⅤⅡ 第一章 序論………………………….....................................1 1-1 前言……………………………………………………………..1 1-2 研究動機………………………………………………….........3 第二章 文獻回顧………………………………………........4 2-1 氣體感測器的種類…………………………………………..4 2-2 固態電解質感測器的形式與原理……….………………..4 2-2-1 平衡電位式感測器………………………………………….6 2-2-2 電化學泵式感測器………………………………………….7 2-2-2-1 電流式感測器…………………………………………..7 2-2-2-2 極限電流式感測器……………………………………..9 2-2-3 混合電位式感測器…………………………………….......11 2-2-3-1 混合電位式感測器的反應機構與原理………………12 2-2-3-1-1 應答電位與感測氣體濃度的對數成線性關係… …………………………………………………………......13 2-2-3-1-2 應答電位與感測氣體濃度成線性…………….15 2-2-3-2 混合電位式感測器的發展………………………........16 2-3 電極材料種類……………………………………………......20 2-3-1 貴金屬電極…………………………………………….......20 2-3-2 混合金屬氧化物電極………………………………….......22 2-3-3 貴金屬與金屬氧化物組成之電極…………………….......23 2-3-4 鈣鈦礦結構金屬氧化物電極…………………...………....23 2-3-4-1 鈣鈦礦結構組成………………………..……………..23 2-3-4-2 鈣鈦礦結構之穩定性………………………..………..24 2-3-4-3 鈣鈦礦結構金屬氧化物電極……………………..…..25 2-4 粉體製備………………………………………………..........28 2-4-1 共沈澱法…………………………………………………...29 2-4-2 水熱法……………………………………………………...31 2-4-3 溶膠-凝膠法……………………………………………….32 第三章 實驗方法與步驟…………………………………35 3-1 實驗流程…………………………………….………………..35 3-2 儀器設備………………………………………………….......36 3-3 實驗藥品與耗材…………………………………….............37 3-4 感測器的製備……………………………………………......38 3-4-1 溶膠-凝膠法製備Pr0.7Sr0.3MnO3電極粉末………...........38 3-4-2 製備感測電極膠………………………………...................40 3-4-3 製備YSZ電解質錠片……………………………..............41 3-4-4 網印工作電極和Pt參考電極……………………………. 42 3-4-5 連接Pt導線………………………………..........................44 3-5 NOx感測器實驗……………………………………………..44 3-6 材料鑑定與儀器原理………………………………………47 3-6-1 熱差/熱分析儀( DTA/TGA )……………………................47 3-6-2愛克斯光繞射儀( XRD )…………………………..............48 3-6-3場發射掃描式電子顯微鏡( FE-SEM )……………….......48 3-6-4氮氣吸附比表面積分析儀( BET )………………..............49 3-6-5 能量分散光譜( EDX )………………………….................50 3-6-6 交流阻抗電化學分析( AC-Impedance )…………..….....50 3-7 NOx感測器實驗原理………………………………….54 第四章 結果與討論……………………………………….56 4-1 電極的鑑定…………………………………………………..56 4-1-1 熱差/示差分析 ( DTA/TGA )…………………….……….56 4-1-2 XRD分析………………………………………….………..58 4-1-3 SEM圖與EDX分析……………………………..….……..61 4-1-4 BET分析………………………………………….….……..66 4-1-5不同煆燒溫度之Pr0.7Sr0.3MnO3晶粒大小…………….….67 4-2 Pr0.7Sr0.3MnO3電極之混合電位式NO2感測器………68 4-2-1煆燒不同溫度之Pr0.7Sr0.3MnO3對50ppm-1300ppm NO2之應答表現……………………………………………………68 4-2-2 PSM感測器在基底氣體和樣本氣體下之極化曲線圖…...74 4-2-3 PSM感測器之修正極化曲線圖…………………………...76 4-2-4 PSM感測器之交流阻抗分析………………..………….....78 4-2-5 PSM感測器在過渡時期的表現…………………………...82 4-2-6 PSM感測NO2濃度轉換之表現…………………………...85 4-2-7 PSM感測器在不同O2分壓下之應答表現………….…….88 4-2-8 PSM1100感測器在不同感測溫度下之應答電位比較……89 4-2-8-1 PSM1100感測器在不同感測溫度下之極化曲線圖…92 4-2-8-2 PSM1100感測器在不同感測溫度下之修正極化曲線圖……………………………………………………..…94 4-3 Pr0.7Sr0.3BO3 (B=Mn、Co、Fe、Cr)電極之混合電位式NO2感測器…………………………….………………….…..95 4-4 PSM1100不同電極濃度對NO2應答電位表現….........96 4-4-1 PSM1100( powder:paste=1:1.5 )感測器長時間之穩定性表現……………………………………………………..……102 4-4-2 PSM1100( powder:paste=1:1.5 )感測器在不同感測氣體體積流速下之應答電位表現……………………..…………103 第五章 結論與建議……………………………………...104 參考文獻…………………………………………………...106 附錄…………………………………………………………111 作者簡介…………………………………………………...112

Asada, A.; Yamamoto, H.; Nakazawa, M.; Osanai, H.,” Limiting current type of oxygen sensor with high performance” Sensors and Actuators, B: Chemical, v B1, 312-318 (1990).

Choy, J.H.; Han, Y.S.; Kim, J.T.; Kim, Y.H., “Citrate route to ultra-fine barium polytitanates with microwave dielectric properties”, J. Mater. Chem., v5, 57-63 (1995).

Dutta, A.; Ishihara, T.; Nishiguchi, H.; Takita, Y.,” Amperometric solid-state gas sensor using LaGaO3 based perovskite oxide electrolyte for detecting hydrocarbon in exhaust gas - II. Improvement of inactive electrode performance” J. Electrochem. Soc., v 151, p H122-H127 (2004).

Elumalai, P.; Wang, J.; Zhuiykov, S.; Terada, D.; Hasei, M.; Miura, N.,” Sensing characteristics of YSZ-based mixed-potential-type planar NO x sensors using NiO sensing electrodes sintered at different temperatures” J. Electrochem. Soc., v 152, p H95-H10 (2005).

Fung, K.Z. and Yu, H.C.,” Electrode properties of La1-xSrxCuO 2.5-δ as new cathode materials for intermediate-temperature SOFCs” J. of Power Sources, v133, 162-168 (2004).

Garzon, F. H.; Mukundan, R.; Brosha, E. L.,” Solid-state mixed potential gas sensors: Theory, experiments and challenges” Solid State Ionics, v 136-137, 633-638 (2000).

Huang, W.; Shuk, P.; Greenblatt, M.,”Properties of sol-gel prepared Ce1-xSmxO2-x/2 Solid electrolytes”, Solid State Ionics, v100, 23-27 (1997).

Ishihara, T.; Fukuyama, M.; Dutta, A.; Kabemura, K.; Nishiguchi, H.; Takita, Y.,” Solid state amperometric hydrocarbon sensor for monitoring exhaust gas using oxygen pumping current”, J. Electrochem. Soc., v 150, H241-H245 (2003).

Julien, C.; Michael, S.S.; Ziolkiewicz, S., “Structural and electrochemical properties of LiNi0.3Co0.7O2 synthesized by different low-temperature techniques”, The International Journal of Inorganic Materials, v1, pp.29-37 (1999).

Li, J.G.; Ikegami, T.; Mori, T.,“Low temperature processing of dense samarium-doped CeO2 ceramics: sintering and grain growth behaviors”, Acta Materialia, v52, 2221-2228 (2004).

Ménil, Francis; Coillard, Veronique; Lucat, Claude;” Critical review of nitrogen monoxide sensors for exhaust gases of lean burn engines” Sensors and Actuators B, v67, 1-23 (2000).

Miura, N.; Kurosawa, H.; Hasei, M.; Lu, G.; Yamazoe, N.,” Stabilized zirconia-based sensor using oxide electrode for detection of NOx in high-temperature combustion-exhausts ” Solid State Ionics, v86-88, 1069-1073 (1996).

Miura, N.; Lu, G.; Yamazoe, N.,”High-temperature potentiometric /amperometric NOx sensors combining stabilized zirconia with mixed-metal oxide electrode” Sensors and Actuators B, v52, 169-178 (1998 A).

Miura, N.; Raisen, T.; Lu, G.; Yamazoe, N.,” Highly selective CO sensor using stabilized zirconia and a couple of oxide electrodes” Sensors and Actuators B, v47, 84-91 (1998 B).

Miura, N.; Lu, G.; Yamazoe, N.,” Progress in mixed-potential type devices based on solid electrolyte for sensing redox gases” Solid State Ionics, v136-137, 533-542 (2000 A).

Miura, N.; Lu, G.; Yamazoe, N.,” Stabilized zirconia-based sensors using WO3 electrode for detection of NO or NO2” Sensors and Actuators B, v65, 125-127 (2000 B).

Miura, N.; Zhuiykov, S.; Ono, T.; Hasei, M.; Yamazoe, N.,”Mixed potential type sensor using stabilized Zirconia and ZnFe2O4 sensing electrode for NOx detection at high temperature”, Sensors and Actuators B, v83, 222-229 (2002).

Miura, N.; Nakatou, M.; Zhuiykov, S.,” Impedancemetric gas sensor based on zirconia solid electrolyte and oxide sensing electrode for detecting total NOx at high temperature” Sensors and Actuators, B: Chemical, v 93 , 221-228 (2003).

Miura, N.; Nakatou, M.; Zhuiykov, S.,” Development of NOx sensing devices based on YSZ and oxide electrode aiming for monitoring car exhausts” Ceramics International, v30, 1135-1139 (2004).

Miura, N.; Wang, J.; Nakatou, M.; Elumalai, P.; Zhuiykov, S.; Hasei, M.,” High-temperature operating characteristics of mixed-potential-type NO 2 sensor based on stabilized-zirconia tube and NiO sensing electrode” Sensors and Actuators B, v114, 903-909 (2006).

Mukundan, R.; Brosha, E.L.; Brown, D.R.; Garzon, F.H.,”Mixed-potential sensor based on a Ce0.8Gd0.2O1.9 electrolyte and platinum and gold electrodes” J. Electrochem. Soc., v147, 1583-1588 (2000).

Peng, C.; Zhang, Y.; Cheng, Z.W., “Nitrate–citrate combustion synthesis and properties of Ce1–x Sm x O2–x/2 solid solutions”, J. of Materials Science: Materials in Electronics, v13, 757-762 (2002).

Szabo, N.F.;Du, H.; Akbar, S.A.; Soliman, A.; Dutta, P.K.,” Microporous zeolite modified yttria stabilized zirconia (YSZ) sensors for nitric oxide (NO) determination in harsh environments” Sensors and Actuators, B: Chemical, v 82, 142-149 (2002).

Traversa, E;Jong Won Yoon;Grilli, M.L.; Di Bartolomeo, E.; Polini, R.,” The NO2 response of solid electrolyte sensors made using nano-sized LaFeO3 electrodes” Sensors and Actuators B,v76, 483-488 (2001).

Usui, T.; Asada, A.; Nakazawa, M.; Osanai, H.,” Gas polarographic oxygen sensor using an oxygen/zirconia electrolyte” J. Electrochem. Soc., v 136, 534-542 (1989).

Wang, J.; Elumalai, P.; Terada, D.; Hasei, M. ; Miura, N.,” Mixed-potential-type zirconia-based NOx sensor using Rh-loaded NiO sensing electrode operating at high temperatures” Solid State Ionics, v 177, SPEC. ISS., 2305-2311 (2006).

West, D.L.; Montgomery, F.C.; Armstrong, T.R.,” Electrically biased NOx sensing elements with coplanar electrodes” J. Electrochem. Soc., v 152, n 6, H74-H79 (2005A).

West, D.L.; Montgomery, F.C.; Armstrong, T.R.,” Use of La0.85Sr0.15CrO3 in high-temperature NOx sensing elements” Sensors and Actuators B,v106, 758-765 (2005B).

Xiong, W.; Kale, G. M.,” Novel high-selectivity NO2 sensor incorporating mixed-oxide electrode”, Sensors and Actuators, B: Chemical, v 114, 101-108 (2006A).

Xiong, W.; Kale, G. M.,” High-selectivity mixed-potential NO2 sensor incorporating Au and CuO + CuCr2O4 electrode couple”, Sensors and Actuators, B: Chemical, v 119, 409-414 (2006B)

Yamashita, K.; Ramanujachary, K.V.; Greenblatt, M.”Hydothermal synthesis and low temperature conduction properties of substituted ceria ceramics”, Solid State Ionics, v81, 53-60 (1995).

Zhu, B.; Liu, X.; Schober, T.,”Novel hybrid conductors based on doped ceria and BCY20 for ITSOFC applications”, Electrochemistry Communications, v6, 378-383 (2004).

Zhuiykov, S.; Ono, T.i; Yamazoe, N.; Miura, N.” High-temperature NOx sensors using zirconia solid electrolyte and zinc-family oxide sensing electrode”, Solid State Ionics, v 152-153, 801-807 (2002).

Zhuiykov, S.; Miura, N.” Development of zirconia-based potentiometric NOx sensors for automotive and energy industries in the early 21st century: What are the prospects for sensors?”,Sensors and Actuators, B: Chemical, v 121, 639-651 (2007).

魏炯權,電子陶瓷材料,全華科技圖書股份有限公司,(2004)。

黃帥凱,”一氧化碳感測器改良之研究”,碩士論文,國立台灣科技大學,(2004)。

方昱超,”金屬摻雜對SDC導氧材料的影響及其在氧氣感測器中應用的研究”,碩士論文,國立台灣科技大學,(2005)。

林彥甫,”Pr1-xSrxMO3應用於高溫型混合電位式NO2氣體感測氣之研究”,碩士論文,國立台灣科技大學,(2006)。

QR CODE