簡易檢索 / 詳目顯示

研究生: 陳毅峰
Yi-Feng Chen
論文名稱: 基於多目標粒子群演算法之辦公室智能照明系統
Intelligent Lighting System for Offices Based on Multi-objective Particle Swarm Optimization
指導教授: 劉益華
Yi-Hua Liu
口試委員: 羅一峰
Yi-Feng Luo
鄧人豪
Ren-Hao Deng
王順忠
Shun-Chung Wang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 63
中文關鍵詞: 日光響應調光系統室內照明ZigbeeIoT多目標演算法
外文關鍵詞: Daylight response dimming system, Indoor lighting, particle swarm optimization, Zigbee, IoT, particle swarm optimization
相關次數: 點閱:366下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 室內照明系統是結合自然光源和人造光源,在特定空間內進行全面規劃之方法,其目標在於創造理想的情境,同時兼顧節能與最佳效能。隨著 LED 燈具成為主流照明選擇以及物聯網技術的普及,照明設計領域一直在持續發展。此外搭配日光響應調光系統(Daylight Responsive Dimming Systems, DRDS)更能讓整體照明節能比提升。
    本研究旨為開發一種同時考慮燈具消耗與環境光源因素的自動調光系統,其為一基於多目標演算法之室內最佳化自動調光系統。該系統考慮燈具消耗功率和環境光源因素,並利用照度計進行實時測量與調節。而本系統主要使用速度約束多目標粒子群演算法(SpeedConstrained Multi-objective Particle Swarm Optimization, SMPSO)作為本文主要演算法架構,並且將其與傳統日光響應調光系統與僅考慮照度需求之單目標粒子群演算法(Particle Swarm Optimization, PSO)進行比較。透過實驗,本文驗證了速度約束多目標粒子群演算法能夠有效地找到最佳的照明設定,其可達到使用者所需的照度,同時兼顧照明效果和能源效率。本研究主要貢獻在於實現一種兼顧高效能、低功耗的室內自動調光系統。


    Indoor lighting systems involve the integration of natural and artificial
    light sources within a specific space, aiming to create an ideal environment
    while ensuring energy efficiency and optimal performance. With LED
    lighting becoming the mainstream choice and the widespread adoption of
    internet of things (IoT) technologies, the field of lighting design has been
    continuously evolving. Moreover, integrating daylight responsive
    dimming systems (DRDS) with lighting design can further enhance overall
    energy savings.
    This study aims to develop an automatic dimming system that
    simultaneously considers fixture consumption and environmental light
    sources. The proposed system is based on a multi-objective algorithm for
    indoor lighting optimization. It takes into account fixture power
    consumption and environmental light sources, utilizing light sensors for
    real-time measurement. The primary algorithm framework employed in
    this system is the speed-constrained multi-objective particle swarm
    optimization (SMPSO), which is compared with traditional DRDS
    dimming systems and single-objective particle swarm optimization (PSO)
    that considers only illumination requirements. Through experiments, the
    study verifies that the SMPSO algorithm effectively identifies the optimal
    dimming commands that meet user-defined illumination requirements while
    considering both lighting effects and energy efficiency. The main
    contribution of this research lies in the realization of an indoor automatic
    dimming system that achieves high performance and low power
    consumption.

    目錄 摘要...................................................................................................................... i Abstract ............................................................................................................... ii 致謝....................................................................................................................iii 圖目錄................................................................................................................ vi 表目錄..............................................................................................................viii 第一章 緒論 ................................................................................................... 1 1.1 研究動機與目的.................................................................................. 2 1.2 文獻回顧.............................................................................................. 5 1.3 論文架構.............................................................................................. 5 第二章 調光系統架構 ................................................................................... 6 2.1 系統硬體架構...................................................................................... 6 2.1.1 照度數據蒐集架構........................................................................ 8 2.1.2 照度感測器介紹............................................................................ 9 2.1.3 照度感測器介紹.......................................................................... 10 2.2 運算核心介紹.................................................................................... 10 2.3 點燈系統硬體架構介紹.................................................................... 11 2.3.1 燈具介紹...................................................................................... 12 2.3.2 閘道器介紹.................................................................................. 13 2.3.3 燈具控制指令.............................................................................. 13 2.3.4 燈具控制指令.............................................................................. 13 第三章 多目標最佳化演算法介紹 ............................................................. 15 3.1 SMPSO 演算法說明.......................................................................... 15 3.1.1 速度更新與位置更新.................................................................. 16 3.1.2 變異.............................................................................................. 18 3.2 SMPSO 演算法應用.......................................................................... 19 v 第四章 實驗方法與結果 ............................................................................. 22 4.1 實驗設計............................................................................................ 22 4.1.1 目標函數定義.............................................................................. 23 4.1.2 實際運算...................................................................................... 28 4.2 實驗結果............................................................................................ 33 4.2.1 照度準確率.................................................................................. 34 4.2.2 模擬照度數值與能源節省之比較.............................................. 36 第五章 結論與未來展望 ............................................................................. 49 5.1 結論.................................................................................................... 49 5.2 未來展望............................................................................................ 49 參考文獻........................................................................................................... 51

    參考文獻
    [1] I. E. Agency, "Net Zero by 2050 A Roadmap for the Global Energy
    Sector,"2021.[Online].Available:https://iea.blob.core.windows.net/asset
    s/deebef5d-0c34-4539-9d0c-10b13d840027/NetZeroby2050-
    ARoadmapfortheGlobalEnergySector_CORR.pdf
    [2] M. A. Ozcelik, ‘‘Light sensor control for energy saving in DC grid smart
    LED lighting system based on PV system,’’ J. Optoelectron. Adv.
    Mater.,vol. 18, pp. 468–474, May 2016.
    [3] W. Si, H. Ogai, K. Hirai, H. Takahashi and M. Ogawa, "An improved
    PSO method for energy saving system of office lighting," SICE Annual
    Conference 2011, Tokyo, Japan, 2011, pp. 1533-1536.
    [4] Jiakang Lu, Dagnachew Birru, and Kamin Whitehouse. 2010. Using
    simple light sensors to achieve smart daylight harvesting. In Proceedings
    of the 2nd ACM Workshop on Embedded Sensing Systems for EnergyEfficiency in Building (BuildSys '10). Association for Computing
    Machinery, New York, NY, USA, 73–78.
    [5] Light and Lighting – Lighting of Work Places – Part I: Indoor Work
    Places, European Standard, EN 12464-1, 2011.
    [6] A. Seyedolhoseini, R. Nemati, H. Maghousmi, S. Karimian and N.
    Masoumi, "Scalable Multipurpose Smart Indoor Lighting System for
    Wireless Sensor Networks," 2021 29th Iranian Conference on Electrical
    Engineering (ICEE), Tehran, Iran, Islamic Republic of, 2021, pp. 182-
    186, doi: 10.1109/ICEE52715.2021.9544201.
    [7] N. Zotos, E. Pallis, C. Stergiopoulos, K. Anastasopoulos, G. Bogdos and
    C. Skianis, "Case study of a dimmable outdoor lighting system with
    intelligent management and remote control," 2012 International
    Conference on Telecommunications and Multimedia (TEMU), Heraklion, Greece, 2012, pp. 43-48, doi: 10.1109/TEMU.2012.6294730.
    [8] P. Valíček, T. Novák, J. Vaňuš, K. Sokanský and R. Martinek,
    "Measurement of the illuminance of interior lighting system automatically
    dimmed to the constant level depending on daylight," 2016 IEEE 16th
    International Conference on Environment and Electrical Engineering
    (EEEIC), Florence, Italy, 2016, pp. 1-5, doi:
    10.1109/EEEIC.2016.7555604.
    [9] C. -T. Lee, L. -B. Chen, H. -M. Chu and C. -J. Hsieh, "Design and
    Implementation of a Leader-Follower Smart Office Lighting Control
    System Based on IoT Technology," in IEEE Access, vol. 10, pp. 28066-
    28079, 2022, doi 10.1109/ACCESS.2022.3158494.
    [10] F. Viani, A. Polo, P. Garofalo, N. Anselmi, M. Salucci and E. Giarola,
    "Evolutionary Optimization Applied to Wireless Smart Lighting in
    Energy-Efficient Museums," in IEEE Sensors Journal, vol. 17, no. 5, pp.
    1213-1214, 1 March1, 2017, doi: 10.1109/JSEN.2017.2647827.
    [11] Y. Cho, J. Seo, H. Lee, S. Choi, A. Choi, M. Sung, and Y. Hur,
    “Platform Design for Lifelog-Based Smart Lighting Control” Elsevier
    Journal on Building and Environment, No. 185, 2020.
    [12]“TEMT6000X01"[Online].Available:https://www.vishay.com/docs/815
    79/temt6000.pdf
    [13]“HC-06" [Online]. Available: https://pdf1.alldatasheet.com/datasheetpdf/view/1179032/ETC1/HC-06.html
    [14]PJRC, “Teensy4.0."[Online].Available:https://www.pjrc.com/store/teens
    y40.html/
    [15] R. P. Foundation, "Raspberry Pi 4 Model B. "[Online]. Available:
    https://www.raspberrypi.com/products/raspberry-pi-4-model-b/.
    [16] IKEA, "TRÅDFRI Led 智慧燈 泡 ." [Online]. Available:
    https://www.ikea.com.tw/zh/products/light-sources-and-smartlighting/smart-lighting/traffic-art-20489749.
    [17] IKEA, "TRÅDFRI 閘 道 器 ." [Online]. Available:
    https://www.ikea.com.tw/zh/products/connectivity-andcontrol/connectivity-and-control/tradfri-art-30445260.
    [18] S. Safaric and K. Malaric, "ZigBee wireless standard," Proceedings
    ELMAR 2006, Zadar, Croatia, 2006, pp. 259-262, doi:
    10.1109/ELMAR.2006.329562.
    [19] “ Home Assistant." [Online]. Available: https://www.homeassistant.io/
    [20] A. J. Nebro, J. J. Durillo, J. Garcia-Nieto, C. A. Coello Coello, F. Luna
    and E. Alba, "SMPSO: A new PSO-based metaheuristic for multi-objective optimization," 2009 IEEE Symposium on Computational
    Intelligence in Multi-Criteria Decision-Making(MCDM), Nashville, TN,
    USA, 2009, pp. 66-73, doi: 10.1109/MCDM.2009.4938830.
    [21] J. Kennedy and R. Eberhart, "Particle swarm optimization,"
    Proceedings of ICNN'95 - International Conference on Neural Networks,
    Perth, WA, Australia, 1995, pp. 1942-1948 vol.4, doi:
    10.1109/ICNN.1995.488968.
    [22] T. Si, N. D. Jana and J. Sil, "Particle Swarm Optimization with Adaptive
    polynomial mutation," 2011 World Congress on Information and
    Communication Technologies, Mumbai, India, 2011, pp. 143-147, doi:
    10.1109/WICT.2011.6141233.
    [23] Optoelectronics Industry Development Association. 2001. The
    The promise of Solid State Lighting for General Illumination. Washington,
    D.C.: U.S. Department of Energy, Office of Energy Efficiency and
    Renewable Energy.
    [24] Kim, In-Tae, et al. "High-performance accuracy of daylight-responsive
    dimming systems with illuminance by distant luminaires for energy-saving buildings." Energies 12.4 (2019): 73

    QR CODE