簡易檢索 / 詳目顯示

研究生: 林詩烜
Shih-Hsuan Lin
論文名稱: 質子化對含Benzo[c]cinnoline之線性共軛高分子在二氧化碳光催化還原的影響
Effect of Protonation on the Photocatalytic CO2 Reduction by Linear Conjugated Polymers containing Benzo[c]cinnoline Structure
指導教授: 陳志堅
Jyh-Chien Chen
口試委員: 羅承慈
Chen-Tsyr Lo
蘇威年
Wei-Nien Su
鍾博文
Po-Wen Chung
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 75
中文關鍵詞: 光催化二氧化碳還原質子化偶氮結構有機線性共軛高分子
外文關鍵詞: Photocatalytic, CO2 Reduction, Benzo[c]cinnoline (BZC), Protonation, Linear Conjugated Polymer (LCP)
相關次數: 點閱:218下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在本研究中,我們透過質子化高分子DPP-BZC和NDI-BZC,成功合成出DPP-BZC-H和NDI-BZC-H。我們透過X射線光電子能譜儀 (XPS) 觀察N 1s的鍵結能的改變,驗證了Benzo[c]cinnoline (BZC) 具有可以質子化的特性。接觸角測試結果顯示高分子DPP-BZC-H和NDI-BZC-H都比質子化前有更低的接觸角,意味著有質子化後材料獲得了更好的親水性。質子化後的DPP-BZC-H和NDI-BZC-H都相對於質子化前有更好的光催化還原二氧化碳的效率。透過測試材料的能階、電阻化學阻抗測試、光電流測試以及時間解析光激螢光測試材料的光電性質,了解質子化對有機線性共軛高分子光電性質的影響。結果顯示質子化後材料能階沒有明顯的改變,且材料和反應物間的界面電阻下降、電子電洞對的分離率上升且擁有了更長的載子壽命。我們的研究證實了BZC作為可質子化之材料在光催領域上的發展潛力,並探討了質子化對於有機線性共軛高分子在光催化還原二氧化碳上的影響。


In this study, we successfully synthesized DPP-BZC-H and NDI-BZC-H through the protonation of DPP-BZC and NDI-BZC polymers. The changes in N 1s binding energy were examined using X-ray photoelectron spectroscopy (XPS) to confirm the protonation capability of benzo[c]cinnoline (BZC). Contact angle measurements revealed that both DPP-BZC-H and NDI-BZC-H exhibited lower contact angles compared to their non-protonated forms, indicating improved hydrophilicity. DPP-BZC-H and NDI-BZC-H exhibited enhanced photocatalytic reduction of carbon dioxide compared to their non-protonated counterparts. By investigating the energy levels, electrochemical impedance spectroscopy, photocurrent measurements, and time-resolved photoluminescence, we gained insights into the effect of protonation on the optoelectronic properties of organic linear conjugated polymers. The results showed no significant changes in energy levels after protonation, while the interfacial resistance decreased, and the separation efficiency of electron-hole pairs increased, longer carrier lifetimes. Our study confirms the potential of BZC as a protonated available material, and explores the effect of protonation on the photocatalytic reduction of carbon dioxide in organic linear conjugated polymers.

目錄 致謝 I 摘要 III ABSTRACT IV 目錄 V 圖目錄 VII 表目錄 IX 第一章 緒論 1 1.1 前言 1 1.2 二氧化碳光觸媒催化 (CO2 Reduction) 2 1.3 有機線性共軛高分子 4 第二章 文獻回顧 6 2.1 光催領域中有機材料的改質策略 6 2.2 質子化 6 2.3 質子化在光催領域上的應用 7 2.4 Benzo[c]cinnoline 質子化之可能性 9 2.5 研究動機 10 第三章 實驗 11 3.1 實驗所需藥品 11 3.2 實驗設備及儀器 13 3.3 單體合成 15 3.4 高分子聚合 18 3.5 光催實驗配置 21 第四章 結果與討論 25 4.1 單體與高分子表徵 25 4.1.1 單體表徵 25 4.1.2 高分子之合成與性質表徵 31 4.1.3 高分子接觸角測試 40 4.2 光催化轉化CO2實驗 41 4.3 高分子之光電性質分析 42 4.3.1 能階測試 42 4.3.2 電化學阻抗測試 46 4.3.3 光電流測試 48 4.3.4 時間解析光致發光測試 49 4.4 光催化空白試驗 51 4.5 金屬殘留程度測試 52 4.6 材料選擇性測試 53 4.7 同位素測試 54 第五章 結論 56 參考文獻 57

(1) Hosseini, S. M.; Aslani, A.; Kasaeian, A. Life cycle cost and environmental assessment of CO2 utilization in the beverage industry: A natural gas-fired power plant equipped with post-combustion CO2 capture. Energy Rep. 2023, 9, 414-436.
(2) Gowd, S. C.; Ganeshan, P.; Vigneswaran, V.; Hossain, M. S.; Kumar, D.; Rajendran, K.; Ngo, H. H.; Pugazhendhi, A. Economic perspectives and policy insights on carbon capture, storage, and utilization for sustainable development. Sci. Total Environ. 2023, 883, 163656.
(3) Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37-38.
(4) Li, K.; An, X.; Park, K. H.; Khraisheh, M.; Tang, J. A critical review of CO2 photoconversion: Catalysts and reactors. Catal. Today 2014, 224, 3-12.
(5) Hong, J.; Zhang, W.; Ren, J.; Xu, R. Photocatalytic reduction of CO2: a brief review on product analysis and systematic methods. Anal. Methods 2013, 5, 1086-1097.
(6) Shit, S. C.; Shown, I.; Paul, R.; Chen, K.-H.; Mondal, J.; Chen, L.-C. Integrated nano-architectured photocatalysts for photochemical CO2 reduction. Nanoscale 2020, 12, 23301-23332.
(7) Navalon, S.; Dhakshinamoorthy, A.; Álvaro, M.; Garcia, H. Photocatalytic CO2 reduction using non‐titanium metal oxides and sulfides. ChemSusChem 2013, 6, 562-577.
(8) Yoshida, H.; Zhang, L.; Sato, M.; Morikawa, T.; Kajino, T.; Sekito, T.; Matsumoto, S.; Hirata, H. Calcium titanate photocatalyst prepared by a flux method for reduction of carbon dioxide with water. Catal. Today 2015, 251, 132-139.
(9) Kar, P.; Farsinezhad, S.; Zhang, X.; Shankar, K. Anodic Cu2S and CuS nanorod and nanowall arrays: preparation, properties and application in CO2 photoreduction. Nanoscale 2014, 6, 14305-14318.
(10) Prakash, J.; Kumar, P.; Saxena, N.; Pu, Z.; Chen, Z.; Tyagi, A.; Zhang, G.; Sun, S. CdS based 3D nano/micro-architectures: formation mechanism, tailoring of visible light activities and emerging applications in photocatalytic H2 production, CO2 reduction and organic pollutant degradation. J. Mater. Chem. A 2023, 11, 10015-10064.
(11) Sun, D.; Liu, W.; Qiu, M.; Zhang, Y.; Li, Z. Introduction of a mediator for enhancing photocatalytic performance via post-synthetic metal exchange in metal–organic frameworks (MOFs). Chem. Commun. 2015, 51, 2056-2059.
(12) Wang, D.; Huang, R.; Liu, W.; Sun, D.; Li, Z. Fe-based MOFs for photocatalytic CO2 reduction: role of coordination unsaturated sites and dual excitation pathways. ACS Catalysis 2014, 4, 4254-4260.
(13) Lei, K.; Wang, D.; Ye, L.; Kou, M.; Deng, Y.; Ma, Z.; Wang, L.; Kong, Y. A metal‐free donor–acceptor covalent organic framework photocatalyst for visible‐light‐driven reduction of CO2 with H2O. ChemSusChem 2020, 13, 1725-1729.
(14) Jin, E.; Lan, Z.; Jiang, Q.; Geng, K.; Li, G.; Wang, X.; Jiang, D. 2D sp2 carbon-conjugated covalent organic frameworks for photocatalytic hydrogen production from water. Chem 2019, 5, 1632-1647.
(15) Sprick, R. S.; Jiang, J.-X.; Bonillo, B.; Ren, S.; Ratvijitvech, T.; Guiglion, P.; Zwijnenburg, M. A.; Adams, D. J.; Cooper, A. I. Tunable organic photocatalysts for visible-light-driven hydrogen evolution. J. Am. Chem. Soc. 2015, 137, 3265-3270.
(16) Yang, C.; Ma, B. C.; Zhang, L.; Lin, S.; Ghasimi, S.; Landfester, K.; Zhang, K. A.; Wang, X. Molecular engineering of conjugated polybenzothiadiazoles for enhanced hydrogen production by photosynthesis. Angew. Chem. Int. Ed 2016, 55, 9202-9206.
(17) Kumar, S.; Karthikeyan, S.; Lee, A. F. g-C3N4-based nanomaterials for visible light-driven photocatalysis. Catalysts 2018, 8, 74.
(18) Liu, J.; Liu, Y.; Liu, N.; Han, Y.; Zhang, X.; Huang, H.; Lifshitz, Y.; Lee, S.-T.; Zhong, J.; Kang, Z. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 2015, 347, 970-974.
(19) Lin, W.-C.; Jayakumar, J.; Chang, C.-L.; Ting, L.-Y.; Elsayed, M. H.; Abdellah, M.; Zheng, K.; Elewa, A. M.; Lin, Y.-T.; Liu, J.-J. Effect of energy bandgap and sacrificial agents of cyclopentadithiophene-based polymers for enhanced photocatalytic hydrogen evolution. Appl. Catal. B 2021, 298, 120577.
(20) Zhang, X.-H.; Wang, X.-P.; Xiao, J.; Wang, S.-Y.; Huang, D.-K.; Ding, X.; Xiang, Y.-G.; Chen, H. Synthesis of 1, 4-diethynylbenzene-based conjugated polymer photocatalysts and their enhanced visible/near-infrared-light-driven hydrogen production activity. J. Catal. 2017, 350, 64-71.
(21) Woods, D. J.; Hillman, S. A.; Pearce, D.; Wilbraham, L.; Flagg, L. Q.; Duffy, W.; McCulloch, I.; Durrant, J. R.; Guilbert, A. A.; Zwijnenburg, M. A. Side-chain tuning in conjugated polymer photocatalysts for improved hydrogen production from water. Energy Environ. Sci. 2020, 13, 1843-1855.
(22) Guo, S.; Zhang, H.; Chen, Y.; Liu, Z.; Yu, B.; Zhao, Y.; Yang, Z.; Han, B.; Liu, Z. Visible-light-driven photoreduction of CO2 to CH4 over N, O, P-containing covalent organic polymer submicrospheres. ACS Catalysis 2018, 8, 4576-4581.
(23) Tang, G.; Zeng, X.; Hou, L.; Song, T.; Yin, S.; Long, B.; Ali, A.; Deng, G.-J. Cross-linked ultrathin polyphosphazene-based nanosheet with promoted charge separation kinetics for efficient visible light photocatalytic CO2 reforming to CH4. Appl. Catal. B 2022, 306, 121090.
(24) Hillman, S. A.; Sprick, R. S.; Pearce, D.; Woods, D. J.; Sit, W.-Y.; Shi, X.; Cooper, A. I.; Durrant, J. R.; Nelson, J. Why do sulfone-containing polymer photocatalysts work so well for sacrificial hydrogen evolution from water? J. Am. Chem. Soc. 2022, 144, 19382-19395.
(25) Hu, Z.; Zhang, X.; Yin, Q.; Liu, X.; Jiang, X.-f.; Chen, Z.; Yang, X.; Huang, F.; Cao, Y. Highly efficient photocatalytic hydrogen evolution from water-soluble conjugated polyelectrolytes. Nano Energy 2019, 60, 775-783.
(26) Yu, X.; Gong, K.; Tian, S.; Gao, G.; Xie, J.; Jin, X.-H. A hydrophilic fully conjugated covalent organic framework for photocatalytic CO 2 reduction to CO nearly 100% using pure water. J. Mater. Chem. A 2023, 11, 5627-5635.
(27) Tabasum, A.; Razzaq, H.; Razzaque, S.; Bibi, A.; Farooq, S.; Yaqub, A.; Siddique, A.; Amir, T.; Rehman, S.-u. Protonated polyaniline and its derivatives as potential adsorbents for simultaneous reclamation of textile dyes and oil/water separation. Mater. Chem. Phys. 2023, 293, 126913.
(28) Despot, L.; Andrieu‐Brunsen, A. Effects of the polymer amount and pH on proton transport in mesopores. Adv. Mater. Interfaces 2023, 10, 2202456.
(29) Huang, J.; Liu, X.; Thormann, E. Surface forces between highly charged cationic polyelectrolytes adsorbed to silica: how control of pH and the adsorbed amount determines the net surface charge. Langmuir 2018, 34, 7264-7271.
(30) Mohan, P.; Kesavan, K. Cationic polyelectrolyte nanocapsules of moxifloxacin for microbial keratitis therapy: development, characterization, and pharmacodynamic Study. AAPS PharmSciTech 2021, 22, 1-17.
(31) Liu, P.-H.; Chuang, C.-H.; Zhou, Y.-L.; Wang, S.-H.; Jeng, R.-J.; Rwei, S.-P.; Liau, W.-B.; Wang, L. Conjugated polyelectrolytes as promising hole transport materials for inverted perovskite solar cells: Effect of ionic groups. J. Mater. Chem. A 2020, 8, 25173-25177.
(32) Ong, W.-J.; Tan, L.-L.; Chai, S.-P.; Yong, S.-T.; Mohamed, A. R. Surface charge modification via protonation of graphitic carbon nitride (g-C3N4) for electrostatic self-assembly construction of 2D/2D reduced graphene oxide (rGO)/g-C3N4 nanostructures toward enhanced photocatalytic reduction of carbon dioxide to methane. Nano Energy 2015, 13, 757-770.
(33) Ye, H.; Gong, N.; Cao, Y.; Fan, X.; Song, X.; Li, H.; Wang, C.; Mei, Y.; Zhu, Y. Insights into the role of protonation in covalent triazine framework-based photocatalytic hydrogen evolution. Chem. Mater. 2022, 34, 1481-1490.
(34) Paul, R.; Kalita, P.; Dao, D. Q.; Mondal, I.; Boro, B.; Mondal, J. Linker independent regioselective protonation triggered detoxification of sulfur mustards with smart porous organic photopolymer. Small 2023, 2302045.
(35) Shin, J.; Kang, D. W.; Lim, J. H.; An, J. M.; Kim, Y.; Kim, J. H.; Ji, M. S.; Park, S.; Kim, D.; Lee, J. Y. Wavelength engineerable porous organic polymer photosensitizers with protonation triggered ROS generation. Nat. Commun. 2023, 14, 1498.
(36) Wagner-Wysiecka, E.; Rzymowski, T.; Szarmach, M.; Fonari, M. S.; Luboch, E. Functionalized azobenzocrown ethers as sensor materials—the synthesis and ion binding properties. Sens. Actuators B Chem. 2013, 177, 913-923.
(37) Chen, J.-C.; Wu, H.-C.; Chiang, C.-J.; Chen, T.; Xing, L. Synthesis and properties of air-stable n-channel semiconductors based on MEH-PPV derivatives containing benzo [c] cinnoline moieties. J. Mater. Chem. C 2014, 2, 4835-4846.
(38) Chen, J.-C.; Wu, H.-C.; Chiang, C.-J.; Peng, L.-C.; Chen, T.; Xing, L.; Liu, S.-W. Investigations on the electrochemical properties of new conjugated polymers containing benzo [c] cinnoline and oxadiazole moieties. Polymer 2011, 52, 6011-6019.
(39) Wu, H.-C.; Chen, J.-C.; Lin, H.-Z. UV-irradiation-enhanced photoluminescence emission of polyfluorenes containing heterocyclic benzo[c]cinnoline moieties. Macromolecules 2015, 48, 4373-4381.
(40) Li, Z.; Ying, L.; Zhu, P.; Zhong, W.; Li, N.; Liu, F.; Huang, F.; Cao, Y. A generic green solvent concept boosting the power conversion efficiency of all-polymer solar cells to 11%. Energy Environ. Sci. 2019, 12, 157-163.
(41) Wang, P.; Li, H.; Gu, C.; Dong, H.; Xu, Z.; Fu, H. Air-stable ambipolar organic field-effect transistors based on naphthalenediimide–diketopyrrolopyrrole copolymers. RSC Adv. 2015, 5, 19520-19527.
(42) Cho, Y.; Lee, H. R.; Jeong, A.; Lee, J.; Lee, S. M.; Joo, S. H.; Kwak, S. K.; Oh, J. H.; Yang, C. Understanding of fluorination dependence on electron mobility and stability of naphthalenediimide-based polymer transistors in environment with 100% relative humidity. ACS Appl. Mater. Interfaces 2019, 11, 40347-40357.
(43) Radha, G.; Kumar, K. S.; Chappanda, K. N.; Aggarwal, H. Zr-NDI MOF based optical and electrochemical dual sensor for selective detection of dopamine. J. Phys. Chem. C 2023, 127, 8864-8872.
(44) Brant, P.; Feltham, R. D. X-ray photoelectron spectra of aryldiazo derivatives of transition metals. J. Organomet. Chem. 1976, 120, C53-C57.
(45) Xu, Y.; Li, Z.; Zhang, F.; Zhuang, X.; Zeng, Z.; Wei, J. New nitrogen-rich azo-bridged porphyrin-conjugated microporous networks for high performance of gas capture and storage. RSC Adv. 2016, 6, 30048-30055.
(46) Dziembaj, R.; Piwowarska, Z. X-ray photoelectron spectroscopy (XPS) as a useful tool to characterize polyaniline doped by 12-tungstosilicic, 12-tungstophosphoric and 12-molybdophosphoric acids. Synth. Me 1994, 63, 225-232.
(47) Cardona, C. M.; Li, W.; Kaifer, A. E.; Stockdale, D.; Bazan, G. C. Electrochemical considerations for determining absolute frontier orbital energy levels of conjugated polymers for solar cell applications. Adv. Mater. 2011, 23, 2367-2371.
(48) Kosco, J.; Sachs, M.; Godin, R.; Kirkus, M.; Francas, L.; Bidwell, M.; Qureshi, M.; Anjum, D.; Durrant, J. R.; McCulloch, I. The effect of residual palladium catalyst contamination on the photocatalytic hydrogen evolution activity of conjugated polymers. Adv. Energy Mater. 2018, 8, 1802181.
(49) Xie, S.; Zhang, Q.; Liu, G.; Wang, Y. Photocatalytic and photoelectrocatalytic reduction of CO2 using heterogeneous catalysts with controlled nanostructures. Chem. Commun. 2016, 52, 35-59.
(1) Hosseini, S. M.; Aslani, A.; Kasaeian, A. Life cycle cost and environmental assessment of CO2 utilization in the beverage industry: A natural gas-fired power plant equipped with post-combustion CO2 capture. Energy Rep. 2023, 9, 414-436.
(2) Gowd, S. C.; Ganeshan, P.; Vigneswaran, V.; Hossain, M. S.; Kumar, D.; Rajendran, K.; Ngo, H. H.; Pugazhendhi, A. Economic perspectives and policy insights on carbon capture, storage, and utilization for sustainable development. Sci. Total Environ. 2023, 883, 163656.
(3) Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37-38.
(4) Li, K.; An, X.; Park, K. H.; Khraisheh, M.; Tang, J. A critical review of CO2 photoconversion: Catalysts and reactors. Catal. Today 2014, 224, 3-12.
(5) Hong, J.; Zhang, W.; Ren, J.; Xu, R. Photocatalytic reduction of CO2: a brief review on product analysis and systematic methods. Anal. Methods 2013, 5, 1086-1097.
(6) Shit, S. C.; Shown, I.; Paul, R.; Chen, K.-H.; Mondal, J.; Chen, L.-C. Integrated nano-architectured photocatalysts for photochemical CO2 reduction. Nanoscale 2020, 12, 23301-23332.
(7) Navalon, S.; Dhakshinamoorthy, A.; Álvaro, M.; Garcia, H. Photocatalytic CO2 reduction using non‐titanium metal oxides and sulfides. ChemSusChem 2013, 6, 562-577.
(8) Yoshida, H.; Zhang, L.; Sato, M.; Morikawa, T.; Kajino, T.; Sekito, T.; Matsumoto, S.; Hirata, H. Calcium titanate photocatalyst prepared by a flux method for reduction of carbon dioxide with water. Catal. Today 2015, 251, 132-139.
(9) Kar, P.; Farsinezhad, S.; Zhang, X.; Shankar, K. Anodic Cu2S and CuS nanorod and nanowall arrays: preparation, properties and application in CO2 photoreduction. Nanoscale 2014, 6, 14305-14318.
(10) Prakash, J.; Kumar, P.; Saxena, N.; Pu, Z.; Chen, Z.; Tyagi, A.; Zhang, G.; Sun, S. CdS based 3D nano/micro-architectures: formation mechanism, tailoring of visible light activities and emerging applications in photocatalytic H2 production, CO2 reduction and organic pollutant degradation. J. Mater. Chem. A 2023, 11, 10015-10064.
(11) Sun, D.; Liu, W.; Qiu, M.; Zhang, Y.; Li, Z. Introduction of a mediator for enhancing photocatalytic performance via post-synthetic metal exchange in metal–organic frameworks (MOFs). Chem. Commun. 2015, 51, 2056-2059.
(12) Wang, D.; Huang, R.; Liu, W.; Sun, D.; Li, Z. Fe-based MOFs for photocatalytic CO2 reduction: role of coordination unsaturated sites and dual excitation pathways. ACS Catalysis 2014, 4, 4254-4260.
(13) Lei, K.; Wang, D.; Ye, L.; Kou, M.; Deng, Y.; Ma, Z.; Wang, L.; Kong, Y. A metal‐free donor–acceptor covalent organic framework photocatalyst for visible‐light‐driven reduction of CO2 with H2O. ChemSusChem 2020, 13, 1725-1729.
(14) Jin, E.; Lan, Z.; Jiang, Q.; Geng, K.; Li, G.; Wang, X.; Jiang, D. 2D sp2 carbon-conjugated covalent organic frameworks for photocatalytic hydrogen production from water. Chem 2019, 5, 1632-1647.
(15) Sprick, R. S.; Jiang, J.-X.; Bonillo, B.; Ren, S.; Ratvijitvech, T.; Guiglion, P.; Zwijnenburg, M. A.; Adams, D. J.; Cooper, A. I. Tunable organic photocatalysts for visible-light-driven hydrogen evolution. J. Am. Chem. Soc. 2015, 137, 3265-3270.
(16) Yang, C.; Ma, B. C.; Zhang, L.; Lin, S.; Ghasimi, S.; Landfester, K.; Zhang, K. A.; Wang, X. Molecular engineering of conjugated polybenzothiadiazoles for enhanced hydrogen production by photosynthesis. Angew. Chem. Int. Ed 2016, 55, 9202-9206.
(17) Kumar, S.; Karthikeyan, S.; Lee, A. F. g-C3N4-based nanomaterials for visible light-driven photocatalysis. Catalysts 2018, 8, 74.
(18) Liu, J.; Liu, Y.; Liu, N.; Han, Y.; Zhang, X.; Huang, H.; Lifshitz, Y.; Lee, S.-T.; Zhong, J.; Kang, Z. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 2015, 347, 970-974.
(19) Lin, W.-C.; Jayakumar, J.; Chang, C.-L.; Ting, L.-Y.; Elsayed, M. H.; Abdellah, M.; Zheng, K.; Elewa, A. M.; Lin, Y.-T.; Liu, J.-J. Effect of energy bandgap and sacrificial agents of cyclopentadithiophene-based polymers for enhanced photocatalytic hydrogen evolution. Appl. Catal. B 2021, 298, 120577.
(20) Zhang, X.-H.; Wang, X.-P.; Xiao, J.; Wang, S.-Y.; Huang, D.-K.; Ding, X.; Xiang, Y.-G.; Chen, H. Synthesis of 1, 4-diethynylbenzene-based conjugated polymer photocatalysts and their enhanced visible/near-infrared-light-driven hydrogen production activity. J. Catal. 2017, 350, 64-71.
(21) Woods, D. J.; Hillman, S. A.; Pearce, D.; Wilbraham, L.; Flagg, L. Q.; Duffy, W.; McCulloch, I.; Durrant, J. R.; Guilbert, A. A.; Zwijnenburg, M. A. Side-chain tuning in conjugated polymer photocatalysts for improved hydrogen production from water. Energy Environ. Sci. 2020, 13, 1843-1855.
(22) Guo, S.; Zhang, H.; Chen, Y.; Liu, Z.; Yu, B.; Zhao, Y.; Yang, Z.; Han, B.; Liu, Z. Visible-light-driven photoreduction of CO2 to CH4 over N, O, P-containing covalent organic polymer submicrospheres. ACS Catalysis 2018, 8, 4576-4581.
(23) Tang, G.; Zeng, X.; Hou, L.; Song, T.; Yin, S.; Long, B.; Ali, A.; Deng, G.-J. Cross-linked ultrathin polyphosphazene-based nanosheet with promoted charge separation kinetics for efficient visible light photocatalytic CO2 reforming to CH4. Appl. Catal. B 2022, 306, 121090.
(24) Hillman, S. A.; Sprick, R. S.; Pearce, D.; Woods, D. J.; Sit, W.-Y.; Shi, X.; Cooper, A. I.; Durrant, J. R.; Nelson, J. Why do sulfone-containing polymer photocatalysts work so well for sacrificial hydrogen evolution from water? J. Am. Chem. Soc. 2022, 144, 19382-19395.
(25) Hu, Z.; Zhang, X.; Yin, Q.; Liu, X.; Jiang, X.-f.; Chen, Z.; Yang, X.; Huang, F.; Cao, Y. Highly efficient photocatalytic hydrogen evolution from water-soluble conjugated polyelectrolytes. Nano Energy 2019, 60, 775-783.
(26) Yu, X.; Gong, K.; Tian, S.; Gao, G.; Xie, J.; Jin, X.-H. A hydrophilic fully conjugated covalent organic framework for photocatalytic CO 2 reduction to CO nearly 100% using pure water. J. Mater. Chem. A 2023, 11, 5627-5635.
(27) Tabasum, A.; Razzaq, H.; Razzaque, S.; Bibi, A.; Farooq, S.; Yaqub, A.; Siddique, A.; Amir, T.; Rehman, S.-u. Protonated polyaniline and its derivatives as potential adsorbents for simultaneous reclamation of textile dyes and oil/water separation. Mater. Chem. Phys. 2023, 293, 126913.
(28) Despot, L.; Andrieu‐Brunsen, A. Effects of the polymer amount and pH on proton transport in mesopores. Adv. Mater. Interfaces 2023, 10, 2202456.
(29) Huang, J.; Liu, X.; Thormann, E. Surface forces between highly charged cationic polyelectrolytes adsorbed to silica: how control of pH and the adsorbed amount determines the net surface charge. Langmuir 2018, 34, 7264-7271.
(30) Mohan, P.; Kesavan, K. Cationic polyelectrolyte nanocapsules of moxifloxacin for microbial keratitis therapy: development, characterization, and pharmacodynamic Study. AAPS PharmSciTech 2021, 22, 1-17.
(31) Liu, P.-H.; Chuang, C.-H.; Zhou, Y.-L.; Wang, S.-H.; Jeng, R.-J.; Rwei, S.-P.; Liau, W.-B.; Wang, L. Conjugated polyelectrolytes as promising hole transport materials for inverted perovskite solar cells: Effect of ionic groups. J. Mater. Chem. A 2020, 8, 25173-25177.
(32) Ong, W.-J.; Tan, L.-L.; Chai, S.-P.; Yong, S.-T.; Mohamed, A. R. Surface charge modification via protonation of graphitic carbon nitride (g-C3N4) for electrostatic self-assembly construction of 2D/2D reduced graphene oxide (rGO)/g-C3N4 nanostructures toward enhanced photocatalytic reduction of carbon dioxide to methane. Nano Energy 2015, 13, 757-770.
(33) Ye, H.; Gong, N.; Cao, Y.; Fan, X.; Song, X.; Li, H.; Wang, C.; Mei, Y.; Zhu, Y. Insights into the role of protonation in covalent triazine framework-based photocatalytic hydrogen evolution. Chem. Mater. 2022, 34, 1481-1490.
(34) Paul, R.; Kalita, P.; Dao, D. Q.; Mondal, I.; Boro, B.; Mondal, J. Linker independent regioselective protonation triggered detoxification of sulfur mustards with smart porous organic photopolymer. Small 2023, 2302045.
(35) Shin, J.; Kang, D. W.; Lim, J. H.; An, J. M.; Kim, Y.; Kim, J. H.; Ji, M. S.; Park, S.; Kim, D.; Lee, J. Y. Wavelength engineerable porous organic polymer photosensitizers with protonation triggered ROS generation. Nat. Commun. 2023, 14, 1498.
(36) Wagner-Wysiecka, E.; Rzymowski, T.; Szarmach, M.; Fonari, M. S.; Luboch, E. Functionalized azobenzocrown ethers as sensor materials—the synthesis and ion binding properties. Sens. Actuators B Chem. 2013, 177, 913-923.
(37) Chen, J.-C.; Wu, H.-C.; Chiang, C.-J.; Chen, T.; Xing, L. Synthesis and properties of air-stable n-channel semiconductors based on MEH-PPV derivatives containing benzo [c] cinnoline moieties. J. Mater. Chem. C 2014, 2, 4835-4846.
(38) Chen, J.-C.; Wu, H.-C.; Chiang, C.-J.; Peng, L.-C.; Chen, T.; Xing, L.; Liu, S.-W. Investigations on the electrochemical properties of new conjugated polymers containing benzo [c] cinnoline and oxadiazole moieties. Polymer 2011, 52, 6011-6019.
(39) Wu, H.-C.; Chen, J.-C.; Lin, H.-Z. UV-irradiation-enhanced photoluminescence emission of polyfluorenes containing heterocyclic benzo[c]cinnoline moieties. Macromolecules 2015, 48, 4373-4381.
(40) Li, Z.; Ying, L.; Zhu, P.; Zhong, W.; Li, N.; Liu, F.; Huang, F.; Cao, Y. A generic green solvent concept boosting the power conversion efficiency of all-polymer solar cells to 11%. Energy Environ. Sci. 2019, 12, 157-163.
(41) Wang, P.; Li, H.; Gu, C.; Dong, H.; Xu, Z.; Fu, H. Air-stable ambipolar organic field-effect transistors based on naphthalenediimide–diketopyrrolopyrrole copolymers. RSC Adv. 2015, 5, 19520-19527.
(42) Cho, Y.; Lee, H. R.; Jeong, A.; Lee, J.; Lee, S. M.; Joo, S. H.; Kwak, S. K.; Oh, J. H.; Yang, C. Understanding of fluorination dependence on electron mobility and stability of naphthalenediimide-based polymer transistors in environment with 100% relative humidity. ACS Appl. Mater. Interfaces 2019, 11, 40347-40357.
(43) Radha, G.; Kumar, K. S.; Chappanda, K. N.; Aggarwal, H. Zr-NDI MOF based optical and electrochemical dual sensor for selective detection of dopamine. J. Phys. Chem. C 2023, 127, 8864-8872.
(44) Brant, P.; Feltham, R. D. X-ray photoelectron spectra of aryldiazo derivatives of transition metals. J. Organomet. Chem. 1976, 120, C53-C57.
(45) Xu, Y.; Li, Z.; Zhang, F.; Zhuang, X.; Zeng, Z.; Wei, J. New nitrogen-rich azo-bridged porphyrin-conjugated microporous networks for high performance of gas capture and storage. RSC Adv. 2016, 6, 30048-30055.
(46) Dziembaj, R.; Piwowarska, Z. X-ray photoelectron spectroscopy (XPS) as a useful tool to characterize polyaniline doped by 12-tungstosilicic, 12-tungstophosphoric and 12-molybdophosphoric acids. Synth. Me 1994, 63, 225-232.
(47) Cardona, C. M.; Li, W.; Kaifer, A. E.; Stockdale, D.; Bazan, G. C. Electrochemical considerations for determining absolute frontier orbital energy levels of conjugated polymers for solar cell applications. Adv. Mater. 2011, 23, 2367-2371.
(48) Kosco, J.; Sachs, M.; Godin, R.; Kirkus, M.; Francas, L.; Bidwell, M.; Qureshi, M.; Anjum, D.; Durrant, J. R.; McCulloch, I. The effect of residual palladium catalyst contamination on the photocatalytic hydrogen evolution activity of conjugated polymers. Adv. Energy Mater. 2018, 8, 1802181.
(49) Xie, S.; Zhang, Q.; Liu, G.; Wang, Y. Photocatalytic and photoelectrocatalytic reduction of CO2 using heterogeneous catalysts with controlled nanostructures. Chem. Commun. 2016, 52, 35-59.

無法下載圖示 全文公開日期 2025/08/23 (校內網路)
全文公開日期 2025/08/23 (校外網路)
全文公開日期 2025/08/23 (國家圖書館:臺灣博碩士論文系統)
QR CODE