簡易檢索 / 詳目顯示

研究生: 蔡雨軒
Yu-Hsuan Tsai
論文名稱: 多樣式顯色材料應用於電溼潤智慧窗元件之研究
Multi-Mode Colorants for Application in Electrowetting-Based Smart Window
指導教授: 邱智瑋
Chih-Wei Chiu
口試委員: 鄭智嘉
Chih-Chia Cheng
游進陽
Chin-Yang Yu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 79
中文關鍵詞: 聚合物表面活性劑油酸顏料奈米粒子著色劑電溼潤之智慧窗元件
外文關鍵詞: polymeric surfactant, oleic acid, pigment nanoparticles, colorant, electrowetting-based smart window
相關次數: 點閱:356下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本研究中,我們展示了有機奈米顏料粒子及油溶性鈣鈦礦量子點良好的分散於溶劑油酸中以及該分散體在基於電潤濕智慧窗能窗口 (Electrowetting-based smart windows,EWSW) 上的應用。自製之其中,具有醯胺官能基團的分散劑,是透過聚醚胺及油酸合成,其中,poly(oxypropylene)-amide (POP-amide) 為自製分散劑的結構,此為增加使有機奈米顏料及鈣鈦礦量子點於油相中均勻、穩定化的必要條件。,且分散之有機顏料及鈣鈦礦溶液並於在油/水兩相有著極好的相斥性。具有醯胺官能基團的分散劑,是透過聚醚胺及油酸合成,為增加有機顏料奈米粒子在有機介質中的分散。最終,實現了平均粒度為 100nm,多分散指數低於 0.1,黏度粘度低於 650cPs 的顏料顆粒的細分散體;及穩定性高不易沈澱,黏度約為40cPs之鈣鈦礦量子點溶液。實驗中,有機顏料及鈣鈦礦量子點於透明EWSW基板在 15V 的驅動電壓下有著 80% 的最大開口率,並且在光照操作下暴露200小時仍能穩定驅動。我們的研究結果表明,彩色油墨及鈣鈦礦量子點對下一代EWSW應用具有前景。


    In this study, we report the preparation of a dispersion of pigment nanoparticles in oleic acid and the deposition of this dispersion on electrowetting-based smart windows (EWSWs). Structurally tailored poly(oxypropylene)-amide (POP-amide) as the dispersant was essential for homogenizing the pigment particles in the oil phase and for facilitating the fast response of oil droplets/water phase separation under an on/off electric field. The requisite POP-amide derivatives, with amide-linkage functional groups, were simply prepared via amidation with (9Z)-Octadec-9-enoic acid. The synthetic design of the amide functionality allows enhanced dispersion of the pigment nanoparticles in an organic medium. Ultimately, a fine dispersion of pigment particles with an average size of 50–100 nm, polydispersity index lower than 0.1, and a low viscosity of 50 cps was realized. Furthermore, the transparent EWSW substrate was exposed to a maximum aperture ratio of 80% at a driving voltage of 10 V and long-term operation of 200 h. Our results indicate the promising potential of colored oil for next-generation-EWSW applications.

    目錄 誌謝 I 摘要 II Abstract III 圖目錄 VII 表目錄 XII 第一章:緒論 1 1.1 前言 1 1.2 研究目的 3 第二章:文獻回顧 4 2.1 染料(dye) 4 2.1.1 染料之介紹 4 2.1.2 染料之分類及應用 4 2.1.3 油溶性染料 5 2.2 顏料(pigment) 6 2.2.1 顏料之介紹 6 2.2.2 顏料之分類及應用 6 2.2.3 有機顏料與染料之差異 7 2.3 螢光材料 8 2.3.1 螢光材料介紹 8 2.3.2 螢光材料分類 8 2.3.3 量子點介紹 10 2.4 粒子之分散及穩定機制 14 2.4.1 分散及穩定之種類 14 2.4.2 界面活性劑介紹 15 2.4.3 分散劑聚醚胺介紹 16 2.5 電濕潤 17 2.5.1 電濕潤現象 17 2.5.2 電溼潤現象之應用 20 2.5.3 電濕潤顯示器 23 2.5.4 電濕潤顯示器的特性 26 2.5.5 電濕潤顯示器之發展 28 2.5.6 電濕潤顯示器之顯色材料 32 2.6 智能窗戶(Smart Window) 33 第三章:實驗材料與方法 36 3.1 實驗藥品/耗材 36 3.2 實驗設備 37 3.3 實驗流程圖 38 3.4 實驗步驟 39 3.4.1 有機分散劑之合成 39 3.4.2 有機顏料之分散 40 3.4.3 製備鈣鈦礦量子點螢光材料之溶液 40 3.5 分析儀器 41 第四章:有機顏料之分散及於電溼潤面板之驅動 46 4.1 有機分散劑之合成 46 4.1.1 有機分散劑 T403/T5000 -Oleic acid 之合成 46 4.1.2分散劑之鑑定及分析 48 4.2 製備分散性良好之有機顏料溶液 50 4.2.1 有機顏料粒子 50 4.2.2 有機顏料粒子之分散及分析 51 4.2.3穿透式電子顯微鏡 (TEM) 分析 55 4.3 有機顏料對UV光之耐受性 57 4.4 有機顏料之透光度 58 4.5 有機顏料之黏度測試 60 4.6 油/水界面相斥性 62 4.7 不同有機顏料在電濕潤顯示器之驅動 64 4.7.1 在電壓作用下之驅動情形 64 4.7.2 驅動之疲勞度測試 71 第五章:製備鈣鈦礦量子點溶液及在電濕潤面板之驅動 72 5.1 配製鈣鈦礦量子點溶液 72 5.2 鈣鈦礦量子點溶液之 UV/PL 分析 73 5.3 鈣鈦礦量子點溶液之黏度分析 75 5.4 油/水界面相斥性 76 5.5 鈣鈦礦量子點溶液在電濕潤顯示器之驅動 77 第六章:結論與未來展望 78 第七章:參考文獻 79

    1. Hayes, R. A.; Feenstra, B., Video-speed electronic paper based on electrowetting. Nature 2003, 425 (6956), 383-385.
    2. Bhat, K.; Heikenfeld, J.; Agarwal, M.; Lvov, Y.; Varahramyan, K., Nonwoven electrowetting textiles. Applied physics letters 2007, 91 (2), 024103.
    3. Heikenfeld, J.; Dhindsa, M., Electrowetting on superhydrophobic surfaces: present status and prospects. Journal of Adhesion Science and Technology 2008, 22 (3-4), 319-334.
    4. Verplanck, N.; Coffinier, Y.; Thomy, V.; Boukherroub, R., Wettability switching techniques on superhydrophobic surfaces. Nanoscale Research Letters 2007, 2 (12), 577.
    5. Lee, P. T.; Chiu, C.-W.; Lee, T.-M.; Chang, T.-Y.; Wu, M.-T.; Cheng, W.-Y.; Kuo, S.-W.; Lin, J.-J., First Fabrication of Electrowetting Display by Using Pigment-in-Oil Driving Pixels. ACS applied materials & interfaces 2013, 5 (13), 5914-5920.
    6. Lippmann, G. Relations entre les phénomènes électriques et capillaires. Gauthier-Villars, 1875.
    7. Mugele, F.; Baret, J.-C., Electrowetting: from basics to applications. Journal of Physics: Condensed Matter 2005, 17 (28), R705.
    8. Sun, B.; Zhou, K.; Lao, Y.; Heikenfeld, J.; Cheng, W., Scalable fabrication of electrowetting displays with self-assembled oil dosing. Applied physics letters 2007, 91 (1), 011106.
    9. Heikenfeld, J.; Zhou, K.; Kreit, E.; Raj, B.; Yang, S.; Sun, B.; Milarcik, A.; Clapp, L.; Schwartz, R., Electrofluidic displays using Young–Laplace transposition of brilliant pigment dispersions. Nature Photonics 2009, 3 (5), 292-296.
    10. Lo, K.-L.; Hsiao, C.-C., Electrowetting display devices and fabrication methods thereof. U.S. Patent No. 7,746,540. 29 Jun. 2010.
    11. Cheng, W.-Y.; Huang, C.-Y.; Lee, K.-C.; Lo, K.-L., Color electrowetting display (EWD) devices. U.S. Patent No. 7,760,420. 20 Jul. 2010.
    12. Cheng, C.-K.; Chiu, W.-W.; Wang, C.-W.; Cheng, W.-Y.; Lo, K.-L., Electrowetting display and methods for manufacturing the same. U.S. Patent No. 7,839,558. 23 Nov. 2010.
    13. Glass, T. R., Electrowetting display. U.S. Patent No. 7,167,156. 23 Jan. 2007.
    14. Zhang, M.-X. M.; Li, Z., Self illuminating electro wetting display. U.S. Patent No. 7,903,061. 8 Mar. 2011.
    15. Feenstra, B. J.; Van Dijk, R.; Giraldo, A.; Hayes, R. A., Transflective electrowetting display device. U.S. Patent No. 7,903,317. 8 Mar. 2011.
    16. Ku, Y. S.; Kuo, S. W.; Huang, Y. S.; Chen, C. Y.; Lo, K. L.; Cheng, W. Y.; Shiu, J. W., Single‐layered multi‐color electrowetting display by using ink‐jet‐printing technology and fluid‐motion prediction with simulation. Journal of the Society for Information Display 2011, 19 (7), 488-495.
    17. Perkin, W. H., William Henry Perkin.
    18. 何瑾馨, 染料化學. 初版. 中國北京: 中國紡織出版社 2004, 1-233.
    19. Booth, G.; Zollinger, H.; McLaren, K.; Sharples, W. G.; Westwell, A., Dyes, general survey. Ullmann's Encyclopedia of Industrial Chemistry 2000.
    20. 黃肖容; 徐卡秋, 精細化工概論. 化學工業出版社 2008, 26-95.
    21. 徐釗, 木質品塗飾工藝. 北京: 化學工業出版社: 2006.
    22. 趙東柏; 言崢嶸; 張傳香, 印刷包裝材料及其選用 500. 北京: 中國紡織出版社: 2009.
    23. 楊新瑋; 羅鈺言; 李錦簇; 何言彬, 染料及有機顏料. 第三版, 北京: 化學工業出版社 1999.
    24. 田利明, 染料, 有機顏料. 中國化學工業年鑒: 綜合篇 2002, 19 (1), 135-138.
    25. 葉耀宗; 黃健豪; 張學明; 分享; 揭開IR, 螢光材料之發展現況及展望.
    26. Chan, W. C.; Nie, S., Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998, 281 (5385), 2016-2018.
    27. Michalet, X.; Pinaud, F.; Bentolila, L.; Tsay, J.; Doose, S.; Li, J.; Sundaresan, G.; Wu, A.; Gambhir, S.; Weiss, S., Quantum dots for live cells, in vivo imaging, and diagnostics. science 2005, 307 (5709), 538-544.
    28. Takagahara, T.; Takeda, K., Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials. Physical Review B 1992, 46 (23), 15578.
    29. Vepřek, S., Electronic and mechanical properties of nanocrystalline composites when approaching molecular size. Thin Solid Films 1997, 297 (1), 145-153.
    30. Alivisatos, A. P., Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271 (5251), 933.
    31. Kalyanasundaram, K.; Borgarello, E.; Duonghong, D.; Grätzel, M., Cleavage of Water by Visible‐Light Irradiation of Colloidal CdS Solutions; Inhibition of Photocorrosion by RuO2. Angewandte Chemie International Edition in English 1981, 20 (11), 987-988.
    32. Rossetti, R.; Nakahara, S.; Brus, L. E., Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution. The Journal of Chemical Physics 1983, 79 (2), 1086-1088.
    33. Murray, C.; Norris, D. J.; Bawendi, M. G., Synthesis and characterization of nearly monodisperse CdE (E= sulfur, selenium, tellurium) semiconductor nanocrystallites. Journal of the American Chemical Society 1993, 115 (19), 8706-8715.
    34. Prati, E.; De Michielis, M.; Belli, M.; Cocco, S.; Fanciulli, M.; Kotekar-Patil, D.; Ruoff, M.; Kern, D. P.; Wharam, D. A.; Verduijn, J., Few electron limit of n-type metal oxide semiconductor single electron transistors. Nanotechnology 2012, 23 (21), 215204.
    35. Derjaguin, B., Theory of the stability of strongly charged lyophobic sols and the adhesion of strongly charged particles in solutions of electrolytes. Acta Physicochim. USSR 1941, 14, 633-662.
    36. Verwey, E. J. W.; Overbeek, J. T. G.; Overbeek, J. T. G., Theory of the stability of lyophobic colloids. Courier Corporation: 1999.
    37. 趙承琛, 界面科學基礎. 復文書局: 2007.
    38. Harris, J. M., Poly (Ethylene Glycol) Chemistry: Biotechnical and Biomedical Applications. Springer Science & Business Media: 1992.
    39. Young, T., An essay on the cohesion of fluids. Philosophical Transactions of the Royal Society of London 1805, 95, 65-87.
    40. Laplace, P., Supplement to the tenth edition. Méchanique céleste 1806, 10.
    41. Valentinuzzi, M. E.; Kohen, A. K., Laplace's Law: What It Is About, Where It Comes from, and How It Is Often Applied in Physiology [Retrospectroscope]. IEEE Pulse 2011, 2 (4), 74-84.
    42. Bieleman, J., Additives for coatings. John Wiley & Sons: 2008.
    43. Carotenuto, G.; Her, Y.-S.; Matijević, E., Preparation and characterization of nanocomposite thin films for optical devices. Industrial & engineering chemistry research 1996, 35 (9), 2929-2932.
    44. Qu, D.; Duncan, J., Study on pigment dispersion in color cosmetics: Milling process and scale-up. Journal of Cosmetic Science 2000, 51 (5), 324-325.
    45. Hao, Z.; Iqbal, A., Some aspects of organic pigments. Chemical Society Reviews 1997, 26 (3), 203-213.
    46. Van Sang, T.; Velamakanni, B. V.; Adkins, R. R., Comparison of methods to assess pigment dispersion. Journal of Coatings Technology 2001, 73 (923), 61-70.
    47. Baez, E.; Quazi, N.; Ivanov, I.; Bhattacharya, S. N., Stability study of nanopigment dispersions. Advanced Powder Technology 2009, 20 (3), 267-272.
    48. Clapp, L.; Schwartz, R.; Vilner, S., Colored fluids for electrowetting, electrofluidic, and electrophoretic technologies. U.S. Patent No. 8,520,286. 27 Aug. 2013.
    49. Spinelli, H. J., Polymeric dispersants in ink jet technology. Advanced Materials 1998, 10 (15), 1215-1218.
    50. Burke, N. A.; Stöver, H. D.; Dawson, F. P., Magnetic nanocomposites: preparation and characterization of polymer-coated iron nanoparticles. Chemistry of materials 2002, 14 (11), 4752-4761.
    51. Creutz, S.; Jérôme, R., Effectiveness of poly (vinylpyridine) block copolymers as stabilizers of aqueous titanium dioxide dispersions of a high solid content. Langmuir 1999, 15 (21), 7145-7156.
    52. Irie, M., Photochromism: memories and switches introduction. ACS Publications: 2000.
    53. Dürr, H.; Bouas-Laurent, H., Photochromism: molecules and systems. Gulf Professional Publishing: 2003.
    54. Ramaiah, M., Chemistry and Applications of Leuco Dyes. Plenum Press, New York: 1997.
    55. Seeboth, A.; Ruhmann, R.; Mühling, O., Thermotropic and thermochromic polymer based materials for adaptive solar control. Materials 2010, 3 (12), 5143-5168.
    56. Mortimer, R. J., Electrochromic materials. Annual review of materials research 2011, 41, 241-268.

    無法下載圖示 全文公開日期 2022/07/28 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE