簡易檢索 / 詳目顯示

研究生: 黃郁軒
Yu-Shiuan Huang
論文名稱: 超音波影像角度複合技術於合成孔徑與傳統成像之比較
Angle Compounded Ultrasound Imaging: Comparision between Synthetic Aperture Beamforming and Conventional Beamforming.
指導教授: 沈哲州
Che-Chou Shen
口試委員: 李百祺
Pai-Chi Li
鄭耿璽
Geng-Shi Jeng
廖愛禾
Ai-Ho Liao
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 109
中文關鍵詞: 合成孔徑成像傳統成像角度複合成像技術斑點雜訊
外文關鍵詞: Synthetic aperture imaging, Conventional imaging, Angle compounded ultrasound imaging, Speckle noise.
相關次數: 點閱:189下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 超音波影像可以利用複合技術(Compounding)來降低斑點雜訊現象(Speckle noise)。複合技術是對同一受測物體改變散射子與成像孔徑(Aperture)的相對位置再取得影像後,將所取得的一系列影像做平均以降低斑點效應的過程,其中改變視角達成之角度複合成像技術是目前多數影像系統搭配線性陣列探頭(Linear array)的複合實施方式。本論文研究目的為探討角度複合技術在傳統逐條掃描成像(Beam-by-beam)與合成孔徑(Synthetic aperture)成像方式下的效能差異。
    相較於發射聚焦於不同角度掃描線之傳統角度複合成像方式,合成孔徑角度複合成像技術針對原始影像點(image pixel)設計隨角度改變之發射端與接收端孔徑加權函數,並施加於波束延遲加總(delay/sum beamforming)過程中的各通道信號上而達到由不同角度觀測之影像,因此在複合過程無須座標轉換(Scan conversion)即可以平均的方式抑制斑點雜訊現象。
    我們採用C_r,CNR,SNR,N_eff以及ρ_SID等量化參數比較兩種角度複合方法之影像品質,結果顯示複合實施前兩者接收f-number增加時皆因孔徑重疊減少而斑點相關性下降,複合實施後合成孔徑方式其斑點平滑度隨影像深度遞增但仍略低於傳統掃描方式,但綜合考慮影像解析度與斑點平滑度的取捨下以最大複合角度θ_max=10°之合成孔徑角度複合效果最佳,代表在適當合成孔徑成像參數下之角度複合技術可以達到抑制斑點雜訊與保持影像解析度之最佳效能。


    Compounding is applied to reduce speckle noise in ultrasound imaging. Speckle noise is reduced by incoherently averaging several images of the same image object with changing the relative position from scatterers and aperture. Angle compounded ultrasound imaging which changing angle of view is currently the most of compounding implementation in image system. The purpose of this study is to explore the difference of performance from angle compounding between conventional beam by beam and synthetic aperture image system. Compared to conventional angle compounded imaging which transmit focus with different angle scanlines, Synthetic aperture angle compounded imaging is to design the aperture apodization at transmitter and receiver for the image pixel, and we can get several images with different angle observation when applying the aperture apodization to the channel data durning delay and sum beamforming. Speckle noise is reduced by incoherently averaging these images without scan conversion.
    We use the quantitative parameter that is C_r,CNR,SNR,N_eff and ρ_SID to compare the image quality between two methods. The result showed that both methods before angle compounding, the speckle correlation decreased when f-number at receiver increased that reduced overlapping aperture. After angle compounding, the speckle smoothness of synthetic aperture angle compounded imaging is still lower than conventional angle compounded imaging. Considering the trade-off between image resolution and speckle smoothness, the compounded performance of synthetic aperture angle compounded imaging with the maximum angle 10° is the best, it shows that synthetic aperture angle compounded imaging with appropriate imaging parameters is the best performance that can suppress speckle noise and remain image resolution.

    摘要 I Abstract III 致謝 V 圖目錄 IX 表目錄 XII 第一章 緒論 1 1-1超音波發展背景 1 1-2 超音波影像的斑點雜訊 5 1-2-1 斑點特性 8 1-2-2 斑點雜訊對影像的影響 13 1-2-3 抑制雜訊之相關文獻探討 18 1-2-3-1 橫向空間複合法 20 1-2-3-2 高度空間複合法 23 1-2-3-3 頻率域複合法 26 1-3 研究動機與目的 28 1-4 論文架構 29 第二章 超音波成像技術之研究基本理論 31 2-1 傳統成像技術 31 2-1-1 成像原理 31 2-1-2 延遲加成法 33 2-2 合成孔徑成像技術 36 2-2-1 成像原理 37 2-2-2 延遲加成法 40 第三章 角度複合成像之實施方式 42 3-1 傳統角度複合成像技術 43 3-1-1 傳統角度複合成像技術原理 43 3-1-2 延遲加成法 46 3-2 合成孔徑角度複合成像技術 48 3-2-1 合成孔徑角度複合成像原理 48 3-2-2 加權孔徑函數 49 3-2-2-1 發射端 49 3-2-2-2 接收端 51 3-3 合成孔徑角度複合成像之等效方法 53 第四章 研究結果 57 4-1 實驗方法 57 4-2 成像結果 61 4-2-1 傳統角度複合影像 61 4-2-2 合成孔徑角度複合影像 64 4-3 量化參數 67 4-4 影像品質比較 71 第五章 討論、結論與未來工作 84 5-1 討論與結論 84 5-2 未來工作 90 參考文獻 91

    [1] 沈哲州,”醫用超音波影像上課講義”,國立台灣科技大學電機所,2014。
    [2] 李維寧,”高效能斑點追蹤技術及其在乳房超音波之應用”,台灣大學電機工程學研究所,碩士論文,民國92年。
    [3] Hansen, J.M.; Jensen, J.A.,”Compounding in Synthetic Aperture Imaging ”, IEEE Trans. Ultrason. Ferroelect. Freq. Control, vol. 59, no. 9, pp. DOI, Sep. 2012.
    [4] Hansen, J.M.; Jensen, J.A., “Optimizing Synthetic Aperture Compound Imaging” , Proceedings of the IEEE Ultrasonics Symposium, pp.382-385,2012.
    [5] Hansen, J.M.; Jensen, J.A,”A Method for Synthetic Aperture Compounding.”, Proceedings of the IEEE Ultrasonics Symposium,pp. 1743-1746,2010.
    [6] Hansen, J.M.; Jensen, J.A.,” Performance of synthetic aperture compounding for in-vivo imaging”, Proceedings of the IEEE Ultrasonics Symposium,pp.1148-1151,2011.
    [7] 吳積霖,“超音波應變複合成像”,台灣大學電機工程學研究所,碩士論文,民國90年。
    [8] G. E. Trahey, S. W. Smith, and O. T. von Ramm, “Speckle pattern correlation with lateral aperture translation: Experimental results and implications for spatial compounding,” IEEE Trans. Ultrason. Ferroelect. Freq. Control, vol. 33, no. 3, pp. 257-264,1986.
    [9] Choye Kim; Changhan Yoon; Jong-Ho Park; Yuhwa Lee; Won Hwa Kim; Jung Min Chang; Byung Ihn Choi; Tai-Kyong Song; Yang-Mo Yoo,“Evaluation of Ultrasound Synthetic Aperture Imaging Using Bidirectional Pixel-Based Focusing_Preliminary Phantom and In Vivo Breast Study”, IEEE Trans. on Biomedical Engineering,vol. 60,no. 10,pp.2716-2724,2013.
    [10] O’Donnell, M. and Silverstein, S.D., “Optimum displacement for compound image generation in medical ultrasound.“ ,IEEE Trans. Ultrason. Ferroelect. Freq. Control, vol. 35,no. 4, pp.470-476 ,1988.
    [11] Trahey GE, Allison JW, Smith SW, von Ramm OT., “A quantitative approach to speckle reduction via frequency compounding.”, Ultrason. Imaging, vol. 8,no. 3, pp.151-64, Jul. 1986.
    [12] Burckhardt, C. B., “Speckle in ultrasound B-mode scans”, IEEE Trans. Sonics Ultrason.,vol.25,no. 1, pp.1-6, 1978.
    [13] Li, P.-C. and O’Donnell, M.,”Elevational spatial compounding”, Ultrason. Imaging,vol.16,no.3,pp.176-189,1994.
    [14] Magnin, P.A., von Ramm, O.T., and Thurstone, F.L.,”Frequency compounding for speckle contrast reduction in phased array images”, Ultrason. Imaging,vol. 4,no. 3, pp.267-281,1982.
    [15] Shattuck, D.P. and von Ramm, O.T., ”Compound scanning with a phased array” , Ultrason. Imaging, ,vol. 4,no. 2,pp.93-107,1982.
    [16] Silverstein, S.D. and O’Donnell, M., “Frequency and temporal compounding of partially correlated signals: speckle suppression and image resolution” ,Proc. SPIE Visual Communications and Image Processing II,vol. 845,pp.188-194,1987.
    [17] Chang JH, Kim HH, Lee J, Shung KK., ” Frequency compounded imaging with a high-frequency dual element transducer.” , Ultrason. Imaging,vol.50,pp.453–457, April.2010.
    [18] Silverstein, S.D. and O’Donnell, M.,”Speckle reduction using correlated mixed-integration techniques”,Proc. SPIE Pattern Recognition and Acoustical Imaging, vol. 768,pp.168-172 ,1987.
    [19] S. K. Jespersen, J. E. Wilhjelm, and H. Sillesen,“Multi-angle compound imaging”, Ultrason. Imaging, vol. 20, pp. 81-102, 1998.
    [20] Pedersen MH, Gammelmark KL, Jensen JA.,” In-vivo evaluation of convex array synthetic aperture imaging.”, Ultrasound Med Biol.,vol. 33.no. 1,pp.37-47,Jan 2007.
    [21] Lokke Gammelmark, K.; Jensen, J.A.,“Experimental Study of Convex Coded Synthetic Transmit Aperture Imaging”, Proceedings of the IEEE Ultrasonics Symposium,vol. 2,pp. 1613-1617,2002.

    QR CODE