簡易檢索 / 詳目顯示

研究生: 謝淳穎
Chun-Ying Hsieh
論文名稱: 基於通道同調因子與角度複合之合成孔徑影像對比度提升技術
Coherent Weighting and Angle Compounding in Synthetic Aperture Imaging
指導教授: 沈哲州
Che-Chou Shen
口試委員: 廖愛禾
Ai-Ho Liao
鄭耿璽
Gency Jeng
劉建宏
J.H. Liu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 85
中文關鍵詞: 合成孔徑角度複合成像傅立葉轉換自相關估算同調因子對比度HRI同調因子LRI同調因子
外文關鍵詞: Synthetic aperture, Angle compounding imaging, Fast Fourier Transform, Autocorrelation, Coherent weighting factor, Contrast, HRI coherent factor, LRI coherent factor
相關次數: 點閱:265下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來受到合成孔徑雷達技術啟發,合成孔徑技術已廣泛應用於超音波影像。傳統合成孔徑影像(STA)是利用陣列探頭單一元素發射球面波,球面波所擴散範圍即為感興趣區域,並由陣列探頭全部元素接收回音信號,這些信號經時間延遲之補償後可形成低解析度的影像(LRI)。將每一次由單一元素發射所得的低解析度影像作同調性相加後即可得一張高解析度的影像(HRI)。由合成孔徑所形成的影像具有較好的橫向解析度,但依然容易受到斑點雜訊影響對影像的判讀。
    合成孔徑影像複合技術可以利用隨角度改變發射端與接收端加權函數,以達到複合不同角度影像之抑制斑點雜訊效果,雖然角度複合應用在合成孔徑成像上能有效提升訊雜比(SNR),但對不同影像強度間之對比度(CNR)提升效果卻有限。因此本研究利用基於通道域同調因子之旁瓣抑制法結合角度複合技術以提升合成孔徑影像對比度,並比較使用傅立葉轉換與自相關估算分別於LRI與HRI實施模式下計算像素同調性,且比較不同方式下結合角度複合技術與同調因子計算的影像優化效果。
    實驗結果顯示,合成孔徑各角度之影像經過複合後乘上零角度同調因子權重對影像優化效果最佳,±15˚複合角度下相較於原合成孔徑複合影像,結合傅立葉轉換同調因子權重時CNR可上升68.4%但SNR下降11.2%,結合自相關同調因子權重時CNR進一步提升113.5%且SNR只下降7%。由此結果顯示,經由同調因子與角度複合技術結合,能夠讓合成孔徑影像保有一定之雜訊比,並且有效提升影像的對比度。


    Synthetic aperture technique has been widely utilized in medical ultrasound imaging due to its success in radar applications. The synthetic aperture image has better lateral resolution than conventional B-mode image, but the images also suffer from speckle artifacts. Although angle compounding can effectively improve the image signal-to-noise (SNR) by suppressing the speckle noises, the corresponding image contrast-to-noise (CNR) is still limited.
    In this study, angle compounding is combined with adaptive coherent weighting to enhance the image contrast. Efficacy of coherent weighting using either LRI or HRI data is examined. Various combinations of coherent weighting and angle compounding are also compared for optimization of synthetic aperture image.
    Results indicate that, when the angle compounded B-mode image is processed by 0˚ GCF weighting, the CNR has its peak value. With ±15˚ angle compounding, the GCF-FFT improves CNR by 68 % with SNR decrease of 11 %. In contrast, the GCF-AR increases CNR by 114 % with SNR decrease of only 7 %. Combining the adaptive coherent weighting with angle compounding in synthetic aperture image could maintain the speckle smoothness while improving image contrast.

    摘要 I Abstract III 誌謝 IV 圖目錄 VIII 表目錄 XI 第一章 緒論 1 1-1 超音波影像原理 1 1-2超音波影像的斑點雜訊 5 1-2-1 斑點雜訊的特性 5 1-2-2 斑點雜訊對影像的影響 10 1-2-3 改善影像之斑點雜訊 14 1-3 研究動機與目的 17 第二章 超音波合成孔徑技術之基本研究理論 18 2-1合成孔徑成像技術 18 2-1-1 成像原理 18 2-2-2 延遲相加法(Delay-and-Sum) 21 2-2 合成孔徑角度複合技術 23 2-2-1角度複合成像原理 23 2-2-2孔徑加權函數 24 2-3 通道信號之同調因子權重計算 27 2-3-1傅立葉轉換同調因子權重計算(GCF-FFT) 28 2-3-2自相關同調因子權重計算(GCF-AR) 29 第三章 研究方法 33 3-1 合成孔徑影像之同調因子計算 33 3-1-1 合成孔徑低解析度影像之同調因子計算方式 33 3-1-2 合成孔徑高解析度影像之同調因子計算方式 35 3-2 合成孔徑影像複合與同調因子權重之應用 37 3-2-1 角度複合影像與同調因子權重結合方式 37 第四章 研究結果 40 4-1 實驗 40 4-1-1 實驗架構與分析參數 40 4-2實驗結果分析 43 4-2-1 LRI-GCF與HRI-GCF差異分析 43 4-2-2 SA-GCF與角度複合結合方式之分析 49 4-2-3 HRI-GCFFFT與HRI-GCFAR的CNR比較分析 54 4-2-4 不同角度複合與權重結合之關係 58 4-2-5 新定量之CNR計算曲線 63 第五章 討論、結論與未來工作 66 參考文獻 68

    [1]沈哲州,「醫用超音波影像上課講義」,國立台灣科技大學電機所,2015。
    [2]邢永騏,「基於自相關法之低複雜度可適性超音波波束成像技術」,碩士論文,國立台灣科技大學,2015。
    [3]黃郁軒,「超音波影像角度複合技術於合成孔徑與傳統成像之比較」,碩士論文,國立台灣科技大學,2015。
    [4]G. E. Trahey, S. W. Smith and O. T. Von, “Speckle pattern correlation with lateral aperture translation: experimental results and implications for spatial compounding,” IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 33, no. 3, pp. 275-264, 1986.
    [5]T. Loupas, W. N. Mcdicken and P. L. Allan, “An adaptive weighted median filter for speckle suppression in medical ultrasonic image,” IEEE transactions on circuits and systems, vol. 36, no. 1, pp.129-135, 1989.
    [6]W. N. Li and P. C. Li, “Efficient speckle tracking technique and its applications in ultrasonic breast imaging,” Master’s thesis, Department of Electrical Engineering College of National Taiwan University, 2003.
    [7]J. Ylitalo, “On the signal-to-noise ratio of a synthetic aperture ultrasound imaging method,” European Journal of Ultrasound 3, pp.277-281, 1996.
    [8]F. N. Ucar, “A speckle suppression technique based on beam-space processing for medical ultrasound imaging,” IEEE ultrasonic symposium, pp.1703-1706, 1998.
    [9]M. Karaman and M. O’Donnell, “Subaperture processing for ultrasonic imaging,” IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 45, no. 1, pp.126-135, 1998.
    [10]J. A. Jensen, S. I. Nikolov, K. L. Gammelmark and M. H. Pedersen, “Synthetic aperture ultrasound imaging,” Ultrasounic 44, pp.e5-e15, 2006.
    [11]C. H. Frazier and W. D. O'Brien, “Synthetic aperture techniques with a virtual source element,” IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 45, no. 1, pp.196-207, 1998.
    [12]I. Trots, A. Nowicki, M. Lewandowski and Y. Tasinkevych, “Synthetic aperture method in ultrasound imaging,” Ultrasound imaging, chapter. 3, 2011.
    [13]J. Kortbek, J. A. Jensen and K. L. Gammelmark, “Sequential beamforming for synthetic aperture imaging,” Ultrasonics 53, pp.1-16, 2011.
    [14]J. M. Hansen and J. A. Jensen, “A method for synthetic aperture compounding,” IEEE international ultrasonics symposium proceedings, pp.1743-1746, 2010
    [15]J. M. Hansen, “Synthetic aperture compound imaging,” PhD thesis, Technical University of Denmark, 2012.
    [16]J. M. Hansen and J. A. Jensen,” Compounding in synthetic aperture imaging,” IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 59, no. 9, pp.2054-2065, 2012.
    [17]P. C. Li and M. L. Li, “Adaptive imaging using the generalized coherence factor,” IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 50, no. 2, pp.128-141, 2003.
    [18]G. Montaldo, M. Tanter, J. Bercoff, N. Benech, and M. Fink, “Coherent plane-wave compounding for very high frame rate ultrasonography and transient elastography,” IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 56, no. 3, pp.489-506, 2009.
    [19]J. Camacho, M. Parrilla, and C. Fritsch, “Phase coherence imaging,” IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 56, no. 5, pp.958-973, 2009.
    [20]M. L. Li, W. J. Guan, and P. C. Li, “Improved synthetic aperture focusing technique with applications in high-frequency ultrasound imaging,” IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 51, no. 1, pp.63-70, 2004.
    [21]Z. Torbatian, R. Adamson, M. Bance, and J. A. Brown, “A split-aperture transmit beamforming technique with phase coherence grating lobe suppression,” IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 57, no. 11, pp.2588-2595, 2010.
    [22]Y. Q. Xing, H. H. Chiang, G. Jeng, C. C. Shen, “Low-complexity adaptive beamforming using autocorrelation-based generalized coherence factor,” IEEE international ultrasonics symposium proceedings, pp.1-4, 2015.
    [23]C .-I. C. Nilsen and S. Holm, “Wiener beamforming and the coherence factor in ultrasound imaging,” IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 57, no. 6, pp. 1329–1346, 2010.

    QR CODE