簡易檢索 / 詳目顯示

研究生: 鍾詩賢
Shi-Xian Chung
論文名稱: 矽光子光學相位陣列的量測與相位修正
Measurement and Phase correction of Optical Phase Arrays on Silicon Photonics Platform
指導教授: 李三良
San-Liang Lee
口試委員: 傅建中
Chien-Chung Fu
何文章
Wen-Jeng Ho
洪勇智
Yung-Jr Hung
宋峻宇
Jiun-Yu Sung
李三良
San-Liang Lee
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 100
中文關鍵詞: 矽光子相位修正光學天線陣列光學相位陣列
外文關鍵詞: Photonic, bulk CMOS process
相關次數: 點閱:419下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近幾年光學雷達因車輛自動化與其他感測應用而快速崛起,對此課題的研究日益增加,而全固態式光學雷達在感測器領域裡,具精小、高解析度與掃描範圍大的優勢。再加上矽光子積體電路相較於一般積體電路來說具有低損耗、成本降低等優點,因此,以矽光子實現的固態光學雷達在感測器上已成不可忽視的關鍵技術。
本篇論文著重於量測與分析由比利時微電子研究中心(IMEC)下線64通道的全固態式光學雷達晶片,並進行相位控制以及相位修正。並量測由台積電(TSMC)製造的光學相位陣列晶片。所有量測與相位控制是以自行撰寫的控制程式,搭配本實驗室提出的演算法進行。
在未經相位修正的情況下,64通道IMEC晶片在1550奈米波段入射光下,天線波導方向光束半高寬為0.150 度、天線陣列方向因出現光斑,其遠場光束半高寬為0.465 度;經過相位修正後,天線波導方向光束發散角保持不變為0.150 度,天線陣列方向光束半高寬縮小為0.123 度,且峰瓣位準可達10 dB以上。受限於垂直耦合器的波長範圍限制,天線波導方向掃描範圍為±3.43 度,天線陣列方向則受天線間距限制為±9.66度。
台積電製作的光學相位陣列晶片的天線波導長度只有200微米,因此波導方向光束發散角為0.532 度;而天線陣列方向則因有256條間距為2.2微米的光學天線,其光束發散角為0.163 度。因製程規則及晶片大小限制,無法埋入電極進行相位修正,仍然驗證了以多晶矽塊材製程製作光學雷達的可行性。


In recent years, the optical radars are becoming hot research topics due to the rapidly increasing applications in Advanced Driver. Assistance Systems (ADAS) and various sensing systems. All-solid-state optical radars have the advantages of compactness, high resolution, and large scanning range, along with the merits of low loss and low cost provide by the silicon photonic integrated circuits (SiPIC), the SiPIC based optical radars have become indispensable for sensing applications.
This thesis focuses on the measurement and analysis of 64-channel all-solid-state optical radar chips fabricated by the Interuniversity Microelectronics Centre (IMEC) as well as the optical SiPIC chips fabricated by the Taiwan Semiconductor Manufacturing Co. (TSMC). Phase control and phase correction will also be pursued for the IMEC chips. All measurements and phase control experiments are conducted with self-made control software and algorithm.
For the optical radar chips fabricated by IMEC, the 64-channel optical phase array (OPA) shows a beam divergence angle of 0.150 degrees in the antenna waveguide direction and 0.465 degrees in the antenna array direction when no phase correction is applied. An input laser light of 1550-nm wavelength band is used in the measurement. After phase correction, the beam divergence angle in the waveguide direction remains unchanged, 0.150 degrees, while it is reduced to 0.123 degrees in the array direction. The peak-to-sidelobe level (PSLL) can exceed 10 dB after phase correction. Due to the limitation of the input grating coupler, the beam steering angle along the waveguide direction is ±3.43 degrees, while it can have ±9.66 degrees along the array direction, which is limited by the antenna pitch.
For the optical radar chips fabricated by TSMC, the 256-channel optical phase array (OPA) shows a beam divergence angle of 0.531 degrees in the waveguide direction since the optical antenna is only 200 μm long. The beam divergence angle in the array direction is 0.163 degrees for the 256 optical antennas of 2.2 μm pitch. There is no phase-control electrodes layout on this chip due to the limitation of chip size for the multi-project service, so no phase correction can be conducted. The measured results still very the feasibility of realizing optical radars with the bulk CMOS process provide by TSMC.

摘要 I Abstract II 致謝 IV 目錄 V 圖目錄 VII 表目錄 XI Chapter 1 導論 1 1-1 前言 1 1-2 研究動機 2 1-3 論文架構 4 Chapter 2 光學天線陣列相關原理 5 2-1 Snell定律 5 2-2 繞射與干涉相關理論 7 2-2-1 干涉理論 7 2-2-2 惠更斯-菲涅耳原理(Huygens–Fresnel principle) 8 2-2-3 菲涅耳-克希荷夫繞射公式(Fresnel-Kirchoff's diffraction formula) 11 2-2-4 菲涅耳繞射(Fresnel diffraction) 15 2-2-5 夫朗和斐繞射(Fraunhofer diffraction) 17 2-3 光學天線陣列遠場映射 19 2-4 光束轉動原理 21 Chapter 3 量測校正與元件介紹 24 3-1 量測校正與方法 24 3-2 多模干涉耦合器(MMI) 29 3-3 相位位移器(Phase Shifter) 33 3-4 TN90GUTM-109A 34 3-4-1 主要量測元件 35 3-5 IMEC-SiPh-108A 37 3-5-1 主要量測元件 37 Chapter 4 元件量測與分析 39 4-1 TN90GUTM-109A 39 4-1-1 後製程 39 4-1-2 量測架構 44 4-1-3 光譜量測分析 45 4-1-4 光學陣列近場量測結果與分析 47 4-1-5 光學陣列遠場場量測結果與分析 50 4-2 IMEC-SiPh-108A 52 4-2-1 光場量測架構 52 4-2-2 光學陣列遠場場量測結果與分析 54 Chapter 5 相位控制 58 5-1 相位控制修正架構與方法 58 5-1-1 實驗架構 58 5-1-2 相位修正方法 61 5-2 元件相位控制、相位修正結果與分析 64 5-2-1 演算法可行性 69 5-2-2 角度控制與相位修正結果 74 Chapter 6 結論與未來發展 86 6-1 成果與討論 86 6-2 未來發展方向 88 參考文獻 89 附件 95

[1] C. V. Poulton, A. Yaacobi, D. B. Cole, M. J. Byrd, M. Raval, D. Vermeulen and M. R. Watts, "Coherent solid-state LIDAR with silicon photonic optical phased arrays," Optics Letters, vol. 42, no. 20, pp. 4091-4094, 2017.
[2] J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini and M. R. Watts, "Large-scale nanophotonic phased array," Nature, vol. 493, no. 7431, pp. 195-199, 2013.
[3] H. Hashemi, "Large-Scale Monolithic Optical Phased Arrays," 2019 Optical Fiber Communications Conference and Exhibition (OFC), pp. 1-3, 2019.
[4] Y.-S. Zeng, S.-W. Qu, B.-J. Chen, Chan and C. Hou, "All-plasmonic Optical Phased Array Integrated on a Thin-film Platform," Scientific Reports, vol. 7, no. 9959, 2017.
[5] T. Kim, P. Bhargava, C. V. Poulton, J. Notaros, A. Yaacobi, E. Timurdogan, C. Baiocco, N. Fahrenkopf, S. Kruger, T. Ngai, Y. Timalsina, M. R. Watts and V. Stojanovi´c, "A Single-Chip Optical Phased Array in a Wafer-Scale Silicon Photonics/CMOS 3D-Integration Platform," IEEE Journal of Solid-State Circuits, vol. 54, no. 11, pp. 3061-3074, 2019.
[6] D. N. Hutchison, J. Sun, J. K. Doylend, R. Kumar, J. Heck, W. Kim, C. T. Phare, A. Feshali and H. Rong, "High-resolution aliasing-free optical beam steering," Optica, vol. 3, no. 8, pp. 887-890, 2016.
[7] 楊家亘, “利用矽光子技術實現八通道分波多工器與光學天線設計,” 國立台灣科技大學碩士論文, 2019.
[8] P. Cheben, R. Halir, J. H. Schmid, H. A. Atwater and D. R. Smith, "Subwavelength integrated photonics," Nature, vol. 560, no. 7720, pp. 565-572, 2018.
[9] M. Raval, C. V. Poulton and M. R. Watts, "Unidirectional waveguide grating antennas with uniform emission for optical phased arrays," Optics Letters, vol. 42, no. 13, pp. 2563-2566, 2017.
[10] J. W. Goodman, Introduction to Fourier Optics, McGraw Hill, 1996.
[11] M. Born and E. Wolf, "Kirchhoff's diffraction theory," in Principles of optics: electromagnetic theory of propagation, interference and diffraction of light (7th expanded ed.), Cambridge: Cambridge University Press, 1999, p. 421.
[12] D. Wu, W. Guo and Y. Yi, "Compound period grating coupler for double beams generation and steering," Applied Optics, vol. 58, no. 2, pp. 361-367, 2019.
[13] J. Midkiff, K. M. Yoo, J.-D. Shin, H. Dalir, M. Teimourpour and R. T. Chen, "Optical phased array beam steering in the mid-infrared on an InP-based platform," Optica Vol. 7, vol. 7, no. 11, pp. 1544-1547, 2020.
[14] M. Schwartz, Lecture 18: Antennas and interference, Harvard University, 2016.
[15] J. K. Doylend, M. J. R. Heck, J. T. Bovington, J. D. Peters, L. A. Coldren and J. E. Bowers, "Two-dimensional free-space beam steering with an optical phased array on silicon-on-insulator," Optics Express, vol. 19, no. 22, pp. 21595-21604, 2011.
[16] L. Soldano and E. Pennings, "Optical multi-mode interference devices based on self-imaging: principles and applications,” Journal of Lightwave Technology," Journal of Lightwave Technology, vol. 13, no. 4, pp. 615 - 627, 1995.
[17] Z. Wu, "Study on low - loss Si waveguides and photonic integrated circuit devices using multi-mode interference waveguides for optical networks," in 早稲田大学大学院理工学研究科, 2005.
[18] S. S. S. Kareenahalli, M. Dagenais, T. J. Tayag, G. Euliss and D. Stone, "Measurement of output phase relationships of multimode interference splitters using a shearing-type near-field Sagnac interferometer," Conference Proceedings. LEOS '97. 10th Annual Meeting IEEE Lasers and Electro-Optics Society 1997 Annual Meeting, vol. 1, pp. 401-402, 1997.
[19] S. Chung, H. Abediasl and H. Hashemi, "A Monolithically Integrated Large-Scale Optical Phased Array in Silicon-on-Insulator CMOS," IEEE Journal of Solid-State Circuits, vol. 53, no. 1, pp. 275-296, 2018.
[20] W. C. L. Li, X. Zhao and M. Sun, "Fast Optical Phased Array Calibration Technique for Random Phase Modulation LiDAR," IEEE Photonics Journal, vol. 11, no. 1, pp. 1-10, 2019.
[21] S. Zhu, T. Hu, Y. Li, Z. Xu, Q. Zhong, Y. Dong and N. Singh, "CMOS-compatible Integrated Silicon Nitride Optical Phase Array for Electrically Tunable Off-chip Laser Beam Steering," 2019 Electron Devices Technology and Manufacturing Conference (EDTM), pp. 228-230, 2019.
[22] 陳偉訓, “利用矽光子技術實現光學天線陣列,” 於 國立臺灣科技大學碩士論文, 2020.
[23] S. A. Miller, C. T. Phare, Y.-C. Chang, X. Ji, O. A. J. Gordillo, A. Mohanty, S. P. Roberts, M. C. Shin, B. Stern, M. Zadka and M. Lipson, "512-Element Actively Steered Silicon Phased Array for Low-Power LIDAR," in Conference on Lasers and Electro-Optics, 2018.
[24] A. C. Lesina, D. Goodwill, E. Bernier, L. Ramunno and P. Berini, "On the performance of optical phased array technology for beam steering: effect of pixel limitations," Optics Express, vol. 28, no. 21, pp. 31637-31657, 2020.
[25] C.-S. Im, B. Bhandari, K.-P. Lee, S.-M. Kim, M.-C. Oh and S.-S. Lee, "Silicon nitride optical phased array based on a grating antenna enabling wavelength-tuned beam steering," Optics Express, vol. 28, no. 3, pp. 3270-3279, 2020.
[26] T. Komljenovic and P. Pintus, "On-chip calibration and control of optical phased arrays," Optics Express, vol. 26, no. 3, pp. 3199-3210, 2018.
[27] X. He, T. Dong, J. He and Y. Xu, "A Design Approach of Optical Phased Array with Low Side Lobe Level and Wide Angle Steering Range," Photonics, vol. 8, no. 3, p. 63, 2021.
[28] H. Zhang, Z. Zhang, C. Peng and W. Hu, "Phase Calibration of On-Chip Optical Phased Arrays via Interference Technique," IEEE Photonics Journal, vol. 12, no. 2, pp. 1-10, 2020.
[29] D. Zhuang, L. Zhagn, X. Han, Y. Li, Y. Li, X. Liu, F. Gao and J. Song, "Omnidirectional beam steering using aperiodic optical phased array with high error margin," Optics Express, vol. 26, no. 15, pp. 19154-19170, 2018.
[30] T. Komljenovic, R. Helkey, L. Coldren and J. E. Bowers, "Sparse aperiodic arrays for optical beam forming and LIDAR," Optics Express, vol. 25, no. 3, pp. 2511-2528, 2017.

無法下載圖示 全文公開日期 2026/09/02 (校內網路)
全文公開日期 2026/09/02 (校外網路)
全文公開日期 2026/09/02 (國家圖書館:臺灣博碩士論文系統)
QR CODE