簡易檢索 / 詳目顯示

研究生: 謝明伸
Ming-shen Xie
論文名稱: 高功率LED路燈散熱設計之模擬與實驗整合研究
An Integrated Numerical and Experimental Investigation on Thermal Management of LED Street Lighting
指導教授: 林顯群
Sheam-chyun Lin
口試委員: 洪俊卿
Jin-tsing Hong
陳呈芳
Cheng-Fang Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 250
中文關鍵詞: 發光二極體路燈散熱鰭片
外文關鍵詞: LED, Street Lighting, Thermal Management, sink
相關次數: 點閱:204下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

LED具有低耗電、體積小、無汞、反應時間快、使用壽命長、及符合環保需求等優點,因此發光二極體應用於照明以取代傳統光源已是無可避免的趨勢;但由於高功率LED的發光效率及壽命,會隨著晶片溫度的升高而快速遞減,所以設計出良好的散熱模組有效降低晶片溫度,以提升LED發光效率及壽命,將是高功率LED於路燈上應用的重要關鍵。有鑑於此本文針對一款LED路燈實體模型進行散熱設計,利用計算流體力學分析軟體,針對高功率LED路燈的原始模型進行模擬分析與缺失探討,並透過實際量測的方式將其數據與模擬值作比較,以探討本文所建構之模擬結果與實際量測間之誤差;接著以模擬的方式針對原型之缺失進行改良設計分析,並加入輻射進行模擬,使其更加貼近真實情況。最後之研究結果顯示此新型散熱設計,在高瓦數200W下仍能具有相當良好之散熱效能,與原始設計相比可降低約22℃之效果,且能使LED晶片在90℃之安全溫度下運作,並且具有良好之均溫性。總結來說本研究所建立之結合數值模擬與實驗驗證的研發設計流程,將能幫助解決LED應用於路燈時之散熱問題,並可作為後續LED路燈散熱研究參考與應用。


Due to the advancement of technology, the performance of light-emitting diode (LED) has been improved significantly to surpass that of the conventional light sources. Light-emitting diode has the advantages of low power consumption, compact size, fast response time, and long lifetime. On top of that, it is mercury free and environmentally friendly. As the result, LED has become one of the important green technologies for remedying the rising threats of global warming and energy shortage in the world. The use of LEDs to replace traditional lighting sources is the trend for the future, particularly in street lighting applications. For this reason, the development of high-power LEDs has been the focus of many LED manufacturing companies. However, since the efficiency and lifetime of light-emitting diode will be gradually decreased by its rising temperature over time, developing a good thermal module to efficiently reduce the LED chip temperature, hence improving the LED efficiency and lifetime, will be the key for adopting high-power LEDs in street lighting applications.
In this study, the thermal management of a high-power LED street light prototype will be investigated via the numerical technique. Commercial CFD software Fluent is employed to develop a numerical model to simulate the heat transport phenomenon of LED street lights. By comparing the simulation results with the measured data, deviation of the developed thermal model from actual results was found within an acceptable 5% range. Based on the simulation results, design improvement for the LED street light prototype was proposed. In addition, radiation effect was incorporated into the developed CFD model to better predict the calculated results. Finally, it has been demonstrated that the newly developed thermal design can effectively dissipate the heat produced from a 200-W LED street light. A 22℃ reduction in temperature for the newly designed LED street light was achieved as compared with the original one. Moreover, the LED chip with improved design can be operated under the safe temperature of 90℃ with a quiet uniform temperature distribution. In summary, the developed thermal design based on the simulation results successfully overcomes the heat dissipation problem usually encountered in LED street lights. Also, the outcome could serve as useful basis for related studies conducted in the future.

摘要 I Abstract II 致謝 IV 目錄 V 圖索引 IX 表索引 XIV 符號索引 XVI 第一章 緒論 1 1.1 前言 1 1.2 LED路燈發展背景 9 1.2.1 發光特性之定義 9 1.2.2 LED路燈產業概況與照明商機 15 1.3 LED的散熱途徑與散熱基板種類 20 1.4 LED路燈之散熱評估 25 1.4.1 LED路燈散熱問題與熱傳設計 29 1.4.2 主動式散熱器 31 1.4.3 被動式散熱器 35 1.5 文獻回顧 40 1.5.1 垂直式散熱鰭片較佳化之設計 41 1.5.2 熱管應用 43 1.5.3 LED散熱設計案例 46 1.6 研究動機、方法與步驟 51 第二章 物理模式與理論分析 56 2.1 熱傳機制與原理 56 2.2 熱阻定義與種類 59 2.2.1 熱阻定義 60 2.2.2 LED封裝熱阻 63 2.2.3 接觸熱阻 63 2.2.4 擴散熱阻 66 2.2.5 熱管等效熱阻 70 2.3 自然對流下之垂直式鰭片的散熱量估算 75 2.3.1 流體流動型態的判定 75 2.3.2 散熱鰭片之性能探討 77 2.3.3 垂直鰭片之最佳間距 83 2.3.4 最大熱傳量估算 92 第三章 數值方法 93 3.1 統御方程式 95 3.2 數值計算方法 99 3.2.1 離散化(Discretization)方法 99 3.2.2 壓力與速度耦合(Pressure-Velocity Coupling) 103 3.2.3 數值求解流程 105 3.3 數值邊界條件與參數設定 108 3.4 熱輻射模型 111 3.4.1 熱輻射總體傳輸方程式 112 3.4.2 多表面輻射傳熱模型(S2S) 114 3.5 LED實體路燈結構 119 3.6 數值模型建構與網格獨立性測試 125 3.6.1 數值模型建構 127 3.6.2 數值模型之網格規劃 131 3.6.3 網格獨立性測試 137 第四章 實驗規劃與設備 139 4.1 實驗環境與設備 141 4.1.1 恆溫環境量測系統 141 4.1.2 溫度感測器與校正 144 4.2 實驗方法與步驟 146 4.2.1 LED實際發熱瓦數確認 146 4.2.2 散熱座陽極處理與否之性能比較 150 4.2.3 原型LED路燈之溫度量測 153 第五章 原始模型散熱設計之結果與討論 158 5.1 LED發熱瓦數之模擬與實驗驗證 159 5.2 鋁材陽極處理與否的性能差異 165 5.3 原始LED路燈之散熱設計與分析 171 5.3.1 60W原始LED路燈之模擬驗證 171 5.3.2 200W原始LED路燈之模擬分析與改善方針 178 5.4 200W LED路燈之改良設計方案 184 5.4.1 原始LED路燈之圓柱狀散熱鰭片最佳化分析 185 5.4.2 圓柱型鰭片改為垂直型散熱鰭片 188 5.4.3 LED路燈上方增加鰭片 191 5.4.4 燈具水平放置角度(θ)的影響 203 5.5 新型LED路燈加入輻射之模擬結果 209 第六章 結論與建議 215 6.1 結論 215 6.2 建議 219 參考文獻 221 作者簡介 229

[1] 中華民國經濟部能源局,“能源產業技術白皮書”,2010年。
[2] 黃秉鈞、湯鈞汶、吳民聖、汪金華,“高亮度LED 之動態特性研究”,中國機械工程學會第二十三屆全國學術研討會論文集,崑山科技大學,台南,永康,2006年11月24-25日。
[3] Steranka, F. M., Bhat, J., Collins, D., and L. Cook, “High Power LED-Technology Status and Market Applications”, Phys. Stat. Sol. (a), Vol. 194, Issue 2, pp. 380-388, 2002.
[4] 王健源,劉如熹,“白光發光二極體製作技術: 21世紀人類的新曙光”,全華科技圖書股份有限公司,2001年。
[5] Kirkpatrick, D. A., “Is Solid-State the Future of Lighting?”, Third International Conference on Solid State Lighting , Proceedings of SPIE, Vol. 5187, pp. 10-21, 2004.
[6] Yam, F. K. and Hassan, Z., “Innovative Advances in LED Technology”, Microelectronics Journal, Vol. 36, pp. 129-137, 2005.
[7] 經濟部市研組,“LED照明應用發光”,統一專題報導,2007年。
[8] Petroski, J., “Thermal Challenges Facing New Generation Light Emitting Diodes (LEDs) for Lighting Applications”, Solid State Lighting II, Proceedings of the SPIE, Vol. 4776, pp. 215-222, 2002.
[9] Philips Lumileds Lighting, U.S. LLC., “Power Light Source LUXEON III Emitter”, Technical Datasheet DS45, www.lumileds.com
[10] Philips Lumileds Lighting, U.S. LLC., “Custom LUXEON Design Guide”, Application Brief AB12, www.lumileds.com
[11] Philips Lumileds Lighting, U.S. LLC., “LUXEON Rebel IES LM-80 Test Report”, Lumen Maintenance DR04, www.lumileds.com
[12] 李碩重,“照明設計學”,全華科技圖書股份有限公司,2004年。
[13] 李麗玲,“省電照明及光污染防制”,工研院能環所,第四屆台灣業餘天文研討會,2007年3月31日。
[14] Research,“LED發光效率提升和各國政府支持2011~2013年照明用LED驅動IC出貨量成長”,http://www.digitimes.com.tw/。
[15] 林明賢,“傳統技術創新升級策略研究-以LED替代傳統光源為例”,國立中央大學管理學院高階經營碩士論文,2007年。
[16] 理財網,財經知識庫“LED散熱基板展望” http://www.moneydj.com.tw/kmdj/Report/ReportViewer.aspx?a。
[17] 繆家鼎、徐文娟,“光電技術”,五南文化事業出本社,2003年。
[18] 哈爾濱晨怡熱管技術有限公司,LED大功率路燈使用什麼樣的散熱器”,http://rg.nx8.net/。
[19] Hu, J. Z., Yang, L. Q., Hwang, W. J., and Shin, M. W., “Thermal and Mechanical Analysis of Delamination in GaN-Based Light-Emitting Diode Packages”, Journal of Crystal Growth, Vol. 288, pp. 157-161, 2006.
[20] 胡凡勳,許君國,周漢源,鄭健宏,陳至臣,“高功率LED之熱場模擬與封裝分析”,中華民國力學學會第二十九屆全國力學會議,2005年。
[21] 黃歆斐,周榮華,”高亮度LED 封裝之熱分析”,中華民國力學學會第三十屆全國力學會議,2006年。
[22] 林顯群,”LED汽車頭燈散熱模組設計介紹”,車用LED頭燈系統研發技術研討會,車輛研究中心ARTC,鹿港,2007年。
[23] Cengel, Yunus A., ” Heat Transfer: a Practiceal Approach”, 2nd Ed., McGraw-HILL, 2003.
[24] Thermacore International, Inc., “Advanced Cooling Solutions for a Changing World”, thermacoreADVrev14, www.thermacore.com
[25] Sharpe, C., “Cooling Systems for Electronic Equipment”, Design Engineering, pp. 99-100, 1986.
[26] Karimpourian, B. and Mahmoudi, J., “Some Important Considerations in Heatsink Design”, Proceedings of 6th EuroSimE Conference, pp. 406-413, 2005.
[27] Elenbaas, W., “Heat Dissipation of Parallel Plates by Free Convection”, Physica, Vol. 9, pp. 1-28, 1942.
[28] Bar-Cohen, A. and Rohsenow, W. M., “Thermally Optimum Spacing of Vertical, Natural Convection Cooled, Parallel Plates”, ASME Journal of Heat Transfer, Vol. 106, pp. 116-123, 1984.
[29] Morrison, A. T., “Optimization of Heat Sink Fin Geometries for Heat Sinks in Natural Convection”, InterSociety Conference on Thermal Phenomena, pp. 145-148, 1992.
[30] Bejan, A., Tsatsaronis, G., and Moran, M., “Thermal Design and Optimization”, Wiley, pp. 241-256, 1996.
[31] Ledezma, G. and Bejan, A., “Heat Sinks with Sloped Plate Fins in Natural and Forced Convection” International Journal of Heat and Mass Transfer, Vol. 39, pp. 1773-1783, 1996.
[32] Deverall, J. E. and Kemme, J. E., ”Satellite Heat Pipe”, USAEC Report LA-3278, Contract W-7405-eng-36, Los Alamos Scientific Laboratory, University of California, 1970.
[33] Mochizuki, M., Saito, Y., Goto, K., and Nguyen, T., “Hinged Heat Pipe for Cooling Notebooks PCs”, IEEE SEMI-THERM Symposium, pp. 64-72, 1997.
[34] Xie, H., Ali, A., and Bhatia, R., “The Use of Heat Pipes in Personal Computers”, InterSociety Conference on Thermal Phenomena, pp. 442-446, 1998.
[35] Oomi, M., Fukumoto, T., and Sotani, J., “A Heat-Pipe System for a Desktop Computer”, Advances in Electronic Packaging, Vol. 2, pp. 1951-1955, 1999.
[36] 賴衍村,“熱管散熱效益之研究”,國立成功大學工程科學研究所碩士論文,2000年。
[37] Legierski, J., Wiecek, B., and Mey, A. D., “Measurements and Simulations of Transient Characteristics of Heat Pipes”, Microelectronics Reliability, Vol. 46, pp. 109-115, 2006.
[38] Asselman, G. A. and Green, D. B., “Heat Pipes”, Phillips Technical Review, Vol. 16, pp. 169-186, 1973.
[39] Kozai, H., “The Effective Thermal Conductivity of Screen Wick”, Proc. 3rd Int. Heat Pipe Symposium, Tsukuba. Japan Association for Heat Pipe, 1988.
[40] Maxwell, J. C., “A Treatise on Electricity and Magnetism”, Vol. 1, 3rd Edn., OUP(1981), 1954.
[41] 王暉雄,“熱管散熱模組效能之探討”,國立成功大學工程科學研究所碩士論文,2002年。
[42] 黃文宏,”燒結式微熱管之製造與性能測試”,台灣大學機械工程學研究所碩士論文,2000年。
[43] 詹瑞華,”燒結式微熱管之熱傳增強研究”,台灣大學機械工程學研究所碩士論文,2001年。
[44] 劉榮祥,”燒結式微熱管之製造與實驗研究”,台灣科技大學機械工程研究所碩士論文,2003 年。
[45] 賈進強,”燒結式扁型熱管熱傳分析與實驗”,海洋大學機械與機電工程研究所碩士論文,2005年。
[46] 張慧萱,“發光二極體燈具散熱模組之數值研究”,國立成功大學工程科學研究所碩士論文,2009。
[47] 方友平,“LED路燈散熱模組不同封裝方式之數值研究”,國立成功大學工程科學研究所碩士論文,2010年。
[48] 林顯群、李龍育、鄭光廷、顏則修、張光仁,“高功率LED 應用於機車頭燈上之散熱設計”,第11 屆車輛工程學術研討會,2006年。
[49] 江志煌,蕭飛賓,“高功率LED模組應用於汽車適路性頭燈系統之熱傳分析與設計”,中華民國機械工程學會第二十三屆全國學術研討會論文集,2006年。
[50] Inaba, Tetsuaki, Watanabe, Shinya, and Yamada, Yuji, “LED Headlamp Development for Mass Production ”, SAE Technical Paper Series, No. 2008-01-0339.
[51] 江松柏,“LED車頭燈模組之熱流模擬分析”,第十四屆全國計算流體力學學術研討會,2007年。
[52] 李龍育,“高功率LED 汽車頭燈散熱設計之模擬與實驗整合研究”,國立台灣科技大學機械工程研究所碩士論文,2008 年。
[53] 許益銑,“LED 車頭燈之數值與實驗整合研究”,國立台灣科技大學機械工程研究所碩士論文,2008 年。
[54] Hamm, Michael and Huhn, Wolfgang, “Design Claims and Technical Solution Steps Generating the World First Full LED Headlamp”, SAE Technical Paper Series, No. 2008-01-0337.
[55] Lienhard, J. H. Ⅳ and Lienhard, J. H. Ⅴ, “A Heat Transfer Textbook”, 3rd Ed., Cambridge, Massachusetts, U.S.A., 2001.
[56] Latham, C. A., “Thermal Resistance of Interface Materials as a Function of Pressure”, Electronics-Cooling, Vol. 2, No. 2, pp. 35, 1996.
[57] Lee, S., “Calculating Spreading Resistance in Heat Sinks”, Electronics-Cooling, Vol. 4, No. 1, pp. 30-33, 1998.
[58] Culham, J. R., Khan, W. A., and Yovanovich, M. M., “The Influence of Material Properties and Spreading Resistance in the Thermal Design of Plate Fin Heat Sinks”, 35th National Heat Transfer Conference, Anaheim, California, June 10-12, 2001.
[59] Culham, J. R., Khan, W. A., Yovanovich, M. M., and Muzychka, Y. S., “The Influence of Material Properties and Spreading Resistance in the Thermal Design of Plate Fin Heat Sinks”, ASME Journal of Electronic Packaging, Vol. 129, pp. 76-81, 2007.
[60] Incropera, P. F. and Dewitt, P. D., “Fundamentals of Heat and Mass Transfer”, 4th Ed., John Wiley & Sons, New York, 1996.
[61] Cengel, Y. A., “Heat Transfer: A Practical Approach”, Second Ed., McGraw-Hill, 2003.
[62] 鄭光廷,“LED晝行燈散熱設計之數值與實驗整合研究”,國立台灣科技大學機械工程研究所碩士論文,2009 年。
[63] 王啟川,熱交換器設計,五南圖書出版公司,台北,2001年。
[64] 李冠賢,“垂直放置鰭片之自然對流熱傳性能實驗研究”,國立中央大學機械工程學系碩士論文,2010年。
[65] Churchill, S. W. and Chu, H. H. S., “Correlating Equations for Laminar and Turbulent Free Convection from a Vertical Plate”, Int. J. Heat Mass Transfer, Vol. 18, pp. 1323-1329, 1975.
[66] Patankar, S. V. and Spalding, D. B., “A Calculation Procedure for Heat Mass and Momentum Transfer in Three-Dimensional Parabolic Flows”, International Journal of Heat Mass Transfer, Vol. 15, pp. 1787-1806, 1972.
[67] Fluent 6.2 User’s Guide, Fluent Inc., 2005.
[68] Modest, M. F., “Radiative Heat Transfer”, McGraw Hill, New York, 1993.
[69] CREE LEDs for the LED Lighting Revolution, CREE XR-E-Q5 Datasheet, http://www.cree.com/

QR CODE