簡易檢索 / 詳目顯示

研究生: 黃得隆
De-Long Huang
論文名稱: 低溫壓電材料0.3 Pb(Zn1/3Nb2/3)O3 – 0.7 Pb(Zr0.52Ti0.48)O3系統開發及多層共燒陶瓷元件研究應用
Development of Low Temperature Piezoelectric Materials and Application of Multi-layer Co-fired Ceramics
指導教授: 周振嘉
Chen-Chia Chou
口試委員: 蘇裕軒
Yu-Hsuan Su
田維欣
Wei-Hsin Tian
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 108
中文關鍵詞: 壓電材料系統壓電致動元件低溫多層共燒陶瓷
外文關鍵詞: Piezoelectric material system, piezoelectric actuating element, low temperature multi-layer co-fired ceramic
相關次數: 點閱:273下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文主要在探討鋅鈮鋯鈦酸鉛鐵電陶瓷系統透過改質在低溫燒結時的壓電特性,運用低溫材料系統完成多層壓電陶瓷元件,並保有一定壓電特性,進而應用在生活周遭多方面之元件。低溫燒結使得材料選用及能源成本大幅降低, 添加適量的Li2CO3當助燒劑使用,並探討不同成份下的鐵電、壓電等特性,設計出優良致動材料系統。
研究主要成分為0.3 Pb(Zn1/3Nb2/3)O3 – 0.7 Pb(Zr0.52Ti0.48)O3 添加0.3~0.9wt%的Li2CO3為助燒結劑,由燒結溫度和密度量測可得知,選用最佳的0.6wt%添加量並在900°C燒結持溫6小時,能夠得到最佳性質及溫度燒結等,將促進燒結速率和緻密化,壓電性質量測方面在鋅鈮酸鉛含量為30 mole%以及助燒結劑添加0.6wt%的Li2CO3,試片同時存在菱方晶與正方晶相,且晶粒大小(1.82 μm)具有最大的機電耦合係數(72.6%) ,顏色呈現淡黃色,且高緻密化甚至能夠透光,其相對密度高達95%以上,其中的Li+ 離子置換PZNZT系統之中的Zn2+形成硬改質添加,形成氧空缺而提高矯頑電場,在改質後的系統中矯頑電場 (14 kV/cm),平均殘留極化值維持在(40 μC/cm2)同時此材料系統在塊材的應變量表現也相當優異,應變約莫為0.35%。另一優勢為高的居禮溫度(約260~280℃)更是0.3PZNZT+(0.3~0.9)wt% Li2CO3之優勢,可克服元件在工作時所自發產生的熱或者高溫之工作環境,預期使用在致動元件上的需求更加符合。
多層元件使用改質後陶瓷粉末搭配業界常見漿料配製所需薄帶,並進行網印、疊壓、切割、燒結等製程後,完成最終多層元件,同時透過TGA檢測得到相關燒結參數並完成多層陶瓷薄帶與銀電極於900℃之燒結,由EDS分析可以得知,多層陶瓷元件在傳統燒結發現會有局部銀擴散問題及漏電流之情況產生,使用微波燒結爐在相同溫度下燒結有效控制銀電極擴散,不論是微觀下或是性質表現上,其壓電常數d33為440pC/N,較塊材有所下降,在施以45kV/cm(270V)的電壓可達到0.2%的應變量並克服傳統燒結無法達到所需性質的問題。
0.3 Pb(Zn1/3Nb2/3)O3 – 0.7 Pb(Zr0.52Ti0.48)O3 + 0.6wt%Li2CO3完成改質後發現Qm品質因子較低(約60), 電能和機械能轉換時容易自身發熱,造成材料內部達到高溫,甚至超過居禮溫度以上,材料轉變成順電相,使材料電的特性下降,故品質因子也是元件所重視的特性之一,所以透過Mn硬改質添加在原材料系統中,使材料系統Qm有效的提升(至175)。


This paper mainly discusses the piezoelectric properties of lead-zinc-zirconium titanate titanate lead-based ceramic system through low-temperature sintering, the use of low-temperature material system to complete multi-layer piezoelectric ceramic components, and maintain a certain piezoelectric properties, and then used in the life of more Aspects of the components. Low temperature sintering to make use of materials and energy costs significantly reduced, add the appropriate amount of Li2CO3 when the use of combustion agent, and explore the different components of the ferroelectric, piezoelectric and other characteristics, the design of excellent actuating material system.
0.3Pb(Zn1 / 3Nb2 / 3) O3 - 0.7 Pb (Zr0.52Ti0.48) O3 is added as 0.3% to 0.9wt% of Li2CO3 as the sintering agent. It can be seen from the sintering temperature and density measurement. The best content of 0.6wt% and the sintering temperature at 900 ° C for 6 hours, can get the best properties and temperature sintering, etc., will promote the sintering rate and densification, piezoelectricity test in the zinc lead niobate content (72.6%) with the largest grain size (1.82 μm), the color of which was yellowish, and the color was yellowish, And high densification can even light transmission, the relative density of up to 95% or more, of which Li + ion replacement PZNZT system of Zn2 + formed by hardening modified to form the oxygen vacancy and improve the coercive field, in the modified system (14 kV / cm), the average residual value is maintained at (40 μC / cm2) while the strain rate of the material system in the block is also quite excellent Strain (0.35%), the other advantage is high Ritual temperature (average 280 ℃) is 0.3PZNZT + (0.3 ~ 0.9) wt% Li2CO3 advantage, can overcome the yuan The work of the heat generated by the heat or high temperature of the working environment, is expected to use the components on the demand for more consistent.
Multi-layer components using modified ceramic powder with the industry common slurry configuration required strip, and screen printing, stacking, cutting, sintering and other processes, the completion of the final multi-layer components, while TGA detection by the relevant sintering parameters and complete multi-layer Ceramic strip and silver electrode at 900 ℃ sintering, EDS analysis can be learned, multi-layer ceramic components in the traditional sintering found that there will be partial silver problems and leakage current situation, the use of laboratory microwave sintering furnace at the same temperature Sintering effective control of silver electrode diffusion, whether microscopic or the performance of the performance, the piezoelectric constant d33 is 440pC / N, compared with the block material decreased, in the application of 45kV / cm (270V) voltage can reach 0.2% Adaptable and successfully overcome the above problems.
0.3Pb(Zn1/ 3Nb2 / 3) O3 - 0.7 Pb (Zr0.52Ti0.48) O3 + 0.6wt% Li2CO3 After the modification, it is found that the Qm quality factor is low (about 60), and the energy and mechanical energy , Resulting in high temperature within the material, or even more than the temperature above the house, the material into a cis phase, so that the characteristics of the material decreased, so the quality factor is also a component of the importance of one of the characteristics, so hardened by Mn added to the raw material system , The material system Qm is effectively raised (to 175).

摘要 I 第一章 緒論 1 1-1 前言 1 1-2研究方向與目的 3 1-2-1 複合式鐵電材料 4 1-2-2添加劑對形成鈣鈦礦的估算 5 1-2-3鈳鐵礦法(Columbite method) 7 1-2-5低熔點氧化物置換 8 1-2-6助燒結劑添加 10 第二章 文獻回顧與基礎理論 11 2-1 鋅鈮鋯鈦酸鉛複合材料系統 11 2-2不同配比之PZNZT壓電陶瓷製程研究 14 2-3 壓電 18 2-3-1 介電陶瓷 18 2-3-2 介電 18 2-3-3 極化機制 19 2-3-4 晶體結構 21 2-4控制材料系統之置換法 22 2-5 燒結理論 25 2-5-2液相燒結 27 第三章 實驗方法與使用儀器 29 3-1實驗藥品 29 3-2實驗儀器 30 3-2-1 掃描式電子顯微鏡 31 3-2-2 X-ray繞射儀 31 3-2-3 鐵電遲滯曲線及應變曲線量測 32 3-2-4 介電量測 32 3-3實驗步驟 33 3-3-1粉末製備 33 3-3-2成型(forming) 33 3-3-3 燒結(sintering) 34 3-3-4 電極與極化處理製作 34 3-3-5基本性質量測與觀察 35 3-4電性量測 36 3-4-1 極化值與電場 36 3-4-2 介電常數對溫度(D-T)曲線量測 36 3-4-3 壓電特性量測 37 第四章 結果與討論 39 4-1不同成分對鈣鈦礦成相比較 39 4-2不同成分對燒結之影響 44 4-3不同成分對壓電特性的影響及研究 51 4-4不同成分對鈣鈦礦鐵電特性之影響 56 4-5不同成分對溫度及介電常數的影響及研究 59 4-6壓電陶瓷系統硬改質研究 64 4-6-1 為何要添加MnO2 64 4-6-2 添加MnO2 對改質後的鋅鈮鋯鈦酸鉛陶瓷鐵電、壓電特性之影響 65 4-7壓電陶瓷系統之薄帶漿料與配比 72 4-7-1薄帶漿料配比與收縮 72 4-7-2電極匹配與擴散 73 4-7-3多層壓電元件微觀與特性分析 74 第五章 結論 78 參考文獻 80 附錄一 3D列印壓電噴頭開發 85 附錄二 少鉛材料發展及應用 0.5(0.3Pb(Zn1/3Nb2/3)O3+0.7Pb(Zr0.52Ti0.48)O3) – 0.5(Bi0.5Na0.5)TiO3 92

1. Y. Sato, H. Kanai and Y. Yamashita,” Effects of Silver and Palladium Doping on the Dielectric Properties of 0.9Pb(Mg1/3Nb2/3)O3-PbTiO3 Ceramic,” J. Am. Ceram. Soc. Vol. 79, No. 1, pp. 261-265(1996)
2. Y. Yamashita, Y. Hos and T. Ichinose,” Phase Stability, Dielectric and Piezoelectric Properties of the Pb(Sc1/2Nb1/2)O3-Pb(Zn1/3Nb2/3)O3-PbTiO3 Ternary Ceramic Materials,” J. Appl. Phys. Vol. 36, Part 1, No. 3A, pp. 1141-1145(1997).
3. S. K. Ang, J. Wang, Dongmei Wan and Junmin Xue,” Mechanical Activation-Assisted Synthesis of Pb(Fe2/3W1/3)O3,” J. Am. Ceram. Soc. Vol. 83, No. 7, pp. 1575-1580(2000).
4. Huiqing Fan, Gun-Tae Park, Jong-jin Choi, and Hyoun - Ee Kim “Effect of annealing atmosphere on domain structures and electromechanical properties of Pb(Zn1/3Nb2/3)O3-based ceramics”, Appl. Phys. Lett., 79(11), 1658(2001)
5. Y. Matsuo, H. Sasaki, S. Hayakawa, F. Kanamaru and M. Koizumi,” High-Pressure Synthesis of Perovskite-Type Pb(Zn1/3Nb2/3)O3,” J. Am. Ceram. Soc.-Discussions and Note, Vol. 52, No. 9, pp. 516-517(1969)
6. 李振良, “微波燒結鋅鈮鋯鈦酸鉛陶瓷系統之特性及微觀研究”, 國立台灣科技大學博士論文. (2005.)
7. J. R. Belsick, A. Halliyal, U. KuMar, R. E. Newnham,” Phase Relations and Dielectric Ptoperties of Ceramics in the System Pb(Zn1/3Nb2/3)O3- SrTiO3-PbTiO3,” Am. Ceram. Soc. Bull., Vol. 66, No. 4, pp. 664-667(1987).
8. M. Inada,” Analysis of the Formation Process of the Piezoelectric PCM Ceramics,” Jpn. Natl. Tech. Rept., Vol. 27, No. 1, pp. 95-102(1997).
9. John B Good enough and Jianshi Zhou N, Varied roles of Pb in transition-metal PbMO3perovskites (M= Ti, V, Cr, Mn, Fe, Ni, Ru) Sci. Technol. Adv. Mater. 16 (2015) 036003 (11pp)
10. N. Vittayakorn ,G. Rujijanagul ,X. Tan, H. He, M. A. Marquardt ,D. P. Cann, Dielectric properties and morphotropic phase boundaries in the xPb(Zn1/3Nb2/3)O3−(1−x)Pb(Zr0.5Ti0.5)O3 pseudo-binary system, J Electroceram (2006) 16: 141–149
11. ln-Tae Seo, Tae-Gon Lee, Dae-Hyeon Kim, Joon Hur, Jong-Hyun Kim, Sahn Nahm, Jungho Ryu, Byung-Yul Choi, Multilayer piezoelectric haptic actuator with CuO-modified PZT-PZNN ceramics, Sensors and Actuators A: Physical, Volume 238, 1 February 2016, Pages 71-79
12. G.F. Fan, M.B. Shi, W.Z. Lu, Y.Q. Wang, Fei Liang, Effects of Li2CO3 and Sm2O3 additives on low-temperature sintering and piezoelectric properties of PZN-PZT ceramics, Journal of the European Ceramic Society 34 (2014) 23–28
13. Hai-Long Li,, Ying Zhang, Ji-Jun Zhou, Xiao-Wen Zhang, Hong Liu, Jing-Zhong Fang, Phase structure and electrical properties of x PZN–(1_x)PZT piezoceramics near the tetragonal/rhombohedra phase boundary,CeramicsInternational41(2015)4822–4828
14. 吳夏語, “鋅鈮鋯鈦酸鉛材料系統應用於超音波元件之電性和疲勞研究”, 國立台灣科技大學碩士論文. (2005.)
15. T. Takenak, A. S. Bhall and L. E. Cross,” Dielectric, Piezoelectric, and pyroelectric Properties of Lead Zirconate-Lead Zinc Niobate Ceramics”, J. Am. Ceram. Soc.-Discussions and Note, Vol. 72, No. 6, pp. 1016-1023(1989).
16. H. A. Megaw,” Crystal structure of double oxides of the perovskite type,” Proc. Phys. Soc. Vol. 58, pp. 133-152 (1946)
17. S. Shinohara, J. G. Back, T. Isobe and M. Senna,” Synthesis of Phase-Pure Pb(ZnxMg1-x)1/3Nb2/3)O3 up to x=0.7 from a Single Mixture via a Soft-Mechanochemical Route,” J. Am. Ceram. Soc., Vol. 83, No. 12, pp. 3208-3210 (2000).
18. Naoki Wakyia, Nobuo Ishizawa,Kazuo Shinozaki, Nobuyasu Mizutani, “Thermal stability of PZN and consideration of stabilization conditions of perovskite type compounds” Materials Research Bulletin, Vol, 30,NO.9, pp.1121-1131,(1995)
19. J. R. Belsick, A. Halliyal, U. KuMar, R. E. Newnham,” Phase Relations and Dielectric Ptoperties of Ceramics in the System Pb(Zn1/3Nb2/3)O3- SrTiO3-PbTiO3,” Am. Ceram. Soc. Bull., Vol. 66, No. 4, pp. 664-667(1987).
20. S. L. Swartz and T. R. Shrout,” Fabrication of perovskite Lead Magnesium Niobate,” Mater. Res. Bull., Vol. 17, pp. 1245-1250(1982).
21. K. K. DEB, M. D. Hill, R. S. Roth and J. F. Kelly,” Dielectric and Pyroelectric Properties of Doped Lead Zinc Niobate (PZN) Ceramic Materials,” Ceramic Bulletin, Vol. 71, No. 3, pp.349-354(1992).
22. Huiqing Fan, "Perovskite stabilization and electromechanical properties of polycrystalline lead zinc niobate–lead zirconate titanate ," Journal of Applied Physics., Vol. 91, No. 1, 2001.
23. Seung-Ho Lee, Chang-Bun Yoon, Sung-Mi Lee, Hyoun-Ee Kim, “Reaction sintering of lead zinc niobate–lead zirconate titanate ceramics”, Journal of the European Ceramic Society, Vol.26, pp.111–115 (2006)
24. Zhdanov, G. C., Solid State Physics, Vol 1. Moscow University Press, Moscow, 1961, p. 184.
25. Jong-Jin Choi , Joo-Hee Lee, Byung-Dong Hahn, Woon-Ha Yoon, Dong-Soo Park Herman Wijshoff, Co-firing of PZN-PZT/Ag multilayer actuator prepared bytape-casting method, Materials Research Bulletin 43 (2008) 483–490
26. 侯春樹, “鈦酸鍶鉛鐵電陶瓷材料疲勞機制之研究”, 國立台灣科技大學博士論文. (2001.)
27. B.G. Demczyk, A.G. Khachaturyan and G. Thomas,”On a minimum Grain Size foe Domain Formation in Lanthanum Modified Lead Titanate Ferroelectric Ceramics”, Scr. Metal.,21 (1987) 967.
28. 李佳鴻,“混合式微波燒結鋅鈮鋯鈦酸鉛陶瓷與添加微量二氧化錳增進機械品質因子之研究”, 國立台灣科技大學博士論文. (2007)
29. HongLiun,RuiNie,YangYue,QianZhang,QiangChen,JianguoZhu,PingYu,DingquanXiao, Changlong Wang,Xingyi Wang Dilip , Effect of MnO2 doping on piezoelectric,dielectric and ferroelectric properties of PNN–PZT ceramics, Ceramics International 41 (2015) 11359–11364
30. 陳正劭,“鈦酸鉛與鈦酸鉛鈣之製備及其電域結構之研究”, 國立台灣科技大學博士論文. (1996)

QR CODE