簡易檢索 / 詳目顯示

研究生: 吳舜淵
Shun-Yuan Wu
論文名稱: 非隔離型單開關高昇壓比轉換器
Novel Non-Isolated Single-Switch High Conversion Ratio Boost Converters
指導教授: 呂錦山
Ching-Shan Leu
口試委員: 林瑞禮
Ray-Lee Lin
黃仲欽
Jonq-Chin Hwang
楊宗銘
Chung-Ming Young
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 69
中文關鍵詞: 直流-直流轉換器耦合電感昇壓轉換器
外文關鍵詞: DC-DC converter, coupled inductor, boost converter
相關次數: 點閱:453下載:22
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 燃料電池和太陽能電池為未來的能源之一,然而兩者所產生的輸出電壓低且變化範圍大所以無法直接提供一般電器使用。 因此,需要一級高昇壓比轉換器將低電壓提升至穩定的高壓(200V or 400V)輸出。傳統的昇壓型轉換器(Boost converter),卻有電壓增益的限制及需要較大的責任週期(Duty cycle)的問題。為了克服此問題,本文將運用耦合電感與串聯技術於傳統昇壓轉換器,進而提出三種新式的昇壓轉換架構。除了電路工作原理之介紹,並以輸入範圍36-75V和400V/0.7A輸出電路規格,共同以開關頻率100 kHz,進行實驗,量測電壓及電流波形,並比較其效率。


    Fuel cells and solar cells are considered two of the future alternative energies. However, both cells produce wide-range low DC output voltage, and cannot be directly connected to AC or DC electrical appliances. Therefore, a high step-up DC-DC converter as the intermediate bus is necessary. Due to having voltage gain and operating duty cycle limitations, the conventional boost converter is not a good choice for the high step-up voltage applications. By employing the coupled-inductor and cascaded techniques, these two problems are solved and three novel single-switch high conversion ratio boost converter are proposed in this thesis. In addition to the description of the operation principle, theoretical analysis, and design guidelines, circuits are implemented and tested with 100 kHz, 36-75V input and 400V/0.7A output specifications.

    Abstract I Acknowledgements II Table of Contents III List of Tables VIII Chapter 1. Introduction 1 1.1. Background and Motivation 1 1.2. Objectives of the Thesis 5 1.3. Organization of the Thesis 5 Chapter 2. Single-Switch High Conversion Ratio DC-DC Converter (HCRC) 7 2.1. Introduction 7 2.2. Operational Principle 10 2.3. Steady-State Analysis 11 2.3.1. Effects of the Non-Ideal Components 13 2.4. Circuit Design 16 2.5. Simulation Results 19 2.6. Experimental Results 21 2.7. Summary 23 Chapter 3. Reduced Voltage Stress Single-Switch High Conversion Ratio DC-DC Converter (RHCRC) 24 3.1. Introduction 24 3.2. Operational Principle 25 3.3. Steady-State Analysis 27 3.3.1. Effects of the Non-Ideal Components 29 3.4. Circuit Design 33 3.4.1. Determine the N and Duty Cycle Range 33 3.5. Simulation Results 34 3.6. Experimental Results 36 3.7. Reduced Voltage Stress Single-Switch High Conversion Ratio DC-DC Converter with Dual Coupled-Inductor (RHCRCD) 37 3.7.1. Operational Principle 40 3.7.2. Voltage Gain Derivation of the RHCRCD 42 3.7.3. Experimental Results 43 3.8. Summary 45 Chapter 4. Conclusions and Future Research 48 4.1. Conclusions 48 4.2. Future Research 49 References 50 Appendix 53 Vita 60

    [1].Santi, E., Franzoni, D., Monti, A., Patterson, D., Ponci, F., and Barry, N. “A Fuel Cell Based Domestic Uninterruptible Power Supply,” in Proc. Applied Power Electronics Conference and Exposition, APEC’02, Vol. 1, Dallas, TX, USA, March 2002, pp. 605–613.
    [2].W. Choi, P. N. Enjeti, and J. W. Howze, “Development of an Equivalent Circuit Model of a Fuel Cell to Evaluate the Effects of Inverter Ripple Current,” in Proc. IEEE Applied Power Electronics Conference and Exposition, APEC’04, Vol. 1, 2004, pp. 355-361.
    [3].G. Fontes, C. Turpin, R. Saisset, T. Meynard, and S. Astier, "Interactions between fuel cells and power converters influence of current harmonics on a fuel cell stack," in Proc. IEEE Power Electronics Specialists Conference, PESC’04, Vol. 6, June 2004, pp.4729-4735.
    [4].S. Jemei, D. Hissel, M.-C. Pera, and J.M. Kauffmann, "A New Modeling Approach of Embedded Fuel-Cell Power Generators Based on Artificial Neural Network," IEEE Transactions on Industrial Electronics, vol. 55, no. 1, pp. 437-447, Jan 2008.
    [5].J. M. Correa, F. A. Farret, L. N. Canha, and M. G. Simoes, “An Electrochemical-Based Fuel-Cell Model Suitable for Electrical Engineering Automation Approach,” IEEE Transactions on Industrial Electronics, Vol. 51, No. 5, pp. 1103–1112, Oct. 2004.
    [6].N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics: Converters, Applications, and Design, 3rd Ed, John Wiley & Sons, Inc, 2003.
    [7].R.W. Erickson, D. Maksimovic, Fundamentals of Power Electronics, 2nd Ed, Kluwer Academic Publishers, 2001.
    [8].Araújo, S.V., Bascopé, R.P.T., Bascopé, G.V.T.,Menezes, L. “Step-up converter with high voltage gain employing three-state switching cell and voltage multiplier,” in Proc. IEEE Power Electronics Specialists Conference, PESC’08, art. No. 4592279, June 2008, pp. 2271-2277.
    [9].Li, W., Lv, X., Deng, Y., Liu, J., He, X. “A review of non-isolated high step-up DC/DC converters in renewable energy applications” in Proc. IEEE Applied Power Electronics Conference and Exposition, APEC’09, art. No. 4802683, 2009, pp. 364-369.
    [10].N. Vazquez, L. Estrada, C. Hernandez, E. Rodriguez “The Tapped-Inductor Boost Converter,” in Proc. IEEE International Symposium on Industrial Electronics, ISIE’07, June 2007, pp.538–543.
    [11].Q. Zhao, F.C. Lee. “High-Efficiency, High Step-up DC-DC Converters”IEEE Transactions on Power Electronics, Vol. 18, No. 1, pp 65-73, Jan. 2003.
    [12].Q. Zhao, Fengfeng Tao, and Fred C. Lee, ‘‘A Front-End DC-DC Converter for Network Server Applications,” in Proc. IEEE Power Electronics Specialists Conference, PESC’01, Vol. 3, Vancouver, BC, Canada, June 2001, pp.1535-1539.
    [13].K.C. Tseng, T.J. Liang. “Novel High Efficiency Step-up Converter” in Proc. IEE Electric Power Applications, Vol. 151, No. 2, Mar. 2004, pp.182-190.
    [14].T.J. Liang, KC Tseng. “Analysis of Integrated Boost-Flyback Step-up Converter” in Proc. IEE Electric Power Applications, Vol. 152, No. 2, Mar. 2005, pp.217-225.
    [15].R.J. Wai, R.Y. Duan. “High Step-up Converter with Coupled-Inductor,”IEEE Transactions on Power Electronics, Vol. 20, No. 5, pp. 1025-1035, Sept. 2005.
    [16].Berkovich, Y. Shenkman, A. Axelrod, B. Golan, G. “Structures of transformerless step-up and step-down controlled rectifiers, ” IET Power Electronics, Vol. 1, No. 2, pp. 245–254, June 2008.
    [17].Y. Berkovich, A. Ioinovici, “Transformerless dc-dc converters with a very high dc line-to-Load voltage ratio”, in Proc. IEEE International Symposium on Circuits and Systems, ISCAS'03, Vol. 3, May 2003, pp. 435 – 438.
    [18].F.L Luo, H. Ye. “Positive output cascade boost converters,”in Proc. IEE Electric Power Applications, Vol. 151, No. 5, Sep. 2004, pp.590-606.
    [19].R.J. Wai, C.Y Lin, R.Y. Duan and Y.R. Chang., "High-efficiency dc-dc converter with high voltage gain and reduced switch stress", IEEE Transactions on Power Electronics, Vo1. 54, No. 1, pp. 354-364, Feb. 2007.
    [20].L. Huber and M. M. Jovanovic, “A design approach for server power supplies for networking,” in Proc. IEEE Applied Power Electronics Conference and Exposition, APEC’00, Vol. 2, New Orleans, LA, USA, pp.1163-1169, Feb. 2000.
    [21].Esam H. Ismail, Mustafa A. Al-Saffar, and Ahmad J. Sabzali, “High Conversion Ratio DC–DC Converters with Reduced Switch Stress,”IEEE Transactions on circuits and systems, Vol. 55, No. 7, pp.2139-2151, Aug. 2008.
    [22].Zhao Q., Tao, F. Hu, Y., and Lee, F.C. “Active-clamp DC/DC converters using magnetic switches,” in Proc. Applied Power Electronics Conference and Exposition, APEC’01, Piscataway, NJ, USA, Feb. 2001, pp. 946–952.
    [23].Copple, E.J., and Heights, A. “High Efficiency DC Step-up Voltage Converter”, US Patent, 5929614, July 1999.
    [24].Yu W., Hutchens C., Lai J.S., Zhang J., Lisi G., Djabbari A., Smith G., Hegarty T. “High efficiency converter with charge pump and coupled inductor for wide input photovoltaic AC module applications” in Proc. IEEE Energy Conversion Congress and Exposition, ECCE’09, art. no. 5316154, Sep. 2009. pp. 3895-3900.
    [25].E.H. Ismail, M.A. Al-Saffar, A.J. Sabzali, and A.A. Fardoun, “A family of single-switch PWM converters with high step-up conversion ratio,” IEEE Transactions on Circuits Systems., Vol. 55, No. 4, pp. 1159-1171, May 2008.
    [26].Maksimovic, Dragan, Cuk, Slobodan “Switching converters with wide DC conversion range,” IEEE Transactions on Power Electronics, Vol. 6, No. 1, pp. 151-157, Jan. 1991.
    [27].Van De Sype, D.M., De Gussemé, K.,Renders, B., Van Den Bossche, A.P.,Melkebeek, J.A. “A single switch boost converter with a high conversion ratio,” in Proc. IEEE Applied Power Electronics Conference and Exposition, APEC’05, Vol. 3, Mar. 2005, pp. 1581-1587.
    [28].Ching-Shan Leu and Ming-Hui Li, ”A Novel Boost Converter for Renewable Energy Power Applications: Boost Converter with Ripple Reduction (BCRR),” Advanced Motor Drives, Power Electronics and Emerging Technologies, Aug. 2008.
    [29].De Britto, J.R., De Freitas, L.C., Farias, V.J.,Coelho, E.A.A., Vieira Jr., J.B. “A Non-Insulated Step-Up/Down DC-DC Converter with Wide Range Conversion, ” in Proc. IEEE Applied Power Electronics Conference and Exposition, APEC’09, art. no. 4802844, Feb. 2009, pp. 1374-1377.
    [30].Back, J.-W., Ryoo, M.-H., Kim, T.-J., Yoo, D.-W., Kim, J.-S. “High boost converter using voltage multiplier,” in Proc. IEEE Industrial Electronics Society, IECON’05, art. no. 1568967, Nov. 2005, pp. 567-572.
    [31].梁適安,交換式電源供給器之理論與實務設計,全華科技圖書股份有限公司, 2006.
    [32].EPARC, “電力電子學綜論”全華科技圖書股份有限公司,2007.
    [33].Christophe P. Basso, “Switch-Mode Power Supplies” The McGraw-Hill Companies, 2008.
    [34].“Power Design” http://www.mag-inc.com/pdf/2006_Ferrite_Catalog/2006_Design_Information.pdf
    [35].“SIMPLIS reference manual” Catena software Ltd. http://www.catena.uk.com/site/downloads/manuals.htm
    [36].Kuo-Ching Tseng, Analysis and Design of a Novel High-Efficiency Step-Up Power Converter, PhD dissertation, Departement of Electrical Engineering National Cheng Kung University, December 2004

    QR CODE