簡易檢索 / 詳目顯示

研究生: 劉文正
WEN-CHENG LIU
論文名稱: 採用單注入式雙注入MOSFET之新型除四注入鎖定除頻器
Design of Divide-by-4 Injection Locked Frequency Divider Using Single-injected Dual Injection MOSFETs
指導教授: 張勝良
Sheng-Lyang Jang
口試委員: 徐敬文
Ching-Wen Hsue
黃進芳
Jhin-Fang Huang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 96
中文關鍵詞: 電壓控制振盪器注入鎖定除頻器
外文關鍵詞: VCO, Injection-locked Frequency Divider
相關次數: 點閱:287下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

現代的無線通訊系統,其中之頻率合成器的功能是處理訊號頻率的升降頻。於頻率合成器電路中,電壓控制振盪器與除頻器是很重要的核心電路。就電壓控制振盪器而言,其設計必須提供低相位雜訊的輸出,進而避免相鄰雜訊經由混波轉換過程中發生不利的干擾。頻率合成器電路中,振盪器的輸出訊號乃經由除頻器來達成降頻的工作,為了達到這個目的,除頻器的設計方向往往是具有高頻操作、寬廣的操作頻寬及低功率消耗性能表現來實現。

採用單注入式雙注入MOSFET之新型除四注入鎖定除頻器晶片的設計,以台積電製程 0.18 μm BiCMOS實現。電路供應電壓為0.8V,採用之壓控振盪器並連LC響應的可調電路,操作頻率範圍從15.85GHz至19.08 GHz,為18.49%,達3.23 GHz。電路核心電流8.16mA,功率消耗為6.53mW,divide-by-4 ILFD晶片面積為0.83* 0.597 mm2。

此論文中又以過電壓應力實驗的方式來進行評估熱載子效應。加壓電壓為2.0 V,其時間為50分鐘,評估對上述RF的台積電零點一八微米製程電路的除四注入鎖定除頻器(ILFD)特性的影響。量測結果顯示高頻帶與低頻帶的鎖定範圍,會隨著加壓的時間增加影響而減少操作範圍,導致電路失去原有之性能來做研究。

最後一個過電壓應力實驗,用在一個雙共振模式之注入鎖定除頻率器,研究應力後的射頻性能。注入鎖定除頻率器是以台積電 0.18 μ m 1P6M CMOS 製程實現,它是以電壓 2.3V加壓,其間共5個小時用以進行評估熱載子效應。加壓應力減少了高頻率和低頻率波段兩個的鎖定範圍,隨著應力時間的增加,降低其振盪器自由振盪頻率的相位雜訊,和注入鎖定狀態的性能降低。而熱載子效應會改變振盪器的頻率、功率消耗還有相位雜訊。


Modern wireless communication systems, which feature of frequency synthesizer is to handle the lifting or descending the frequency of the signals. For practice in frequency synthesizer circuit, voltage-controlled oscillator (VCO) in core circuit of system that plays a key role. Voltage-controlled oscillator, its design must provide low phase noise output to avoid degrading the mixer-converted signal by adjacent through reverberation noise and cross-interfering tunes. Oscillator output signal comes through in addition to injection-locked frequency divider (ILFD) for lower frequency band. In order to achieve these designs, the key factors of operation performance with a high frequency operation, broad bandwidth and low power consumption to achieve.

A wide locking range and operation range push-push divide-by-4 injection-locked frequency divider is proposed in the letter and was implemented in the TSMC 0.18 μm 3P6M BiCMOS process. The divide-by-4 ILFD uses a cross-coupled voltage-controlled oscillator (VCO) with a parallel-tuned LC resonator for easy startup oscillation and dual injection transistors. At the drain-source bias of 0.8 V, and at the incident power of 0 dBm the operation range of the divide-by-4 is 3.23 GHz, from the incident frequency 15.85 to 19.08 GHz, the percentage is 18.49%. The core power consumption is 6.53mW. The die area is 0.83×0.597 mm2.

This paper experimentally investigates the hot carrier effects on the RF characteristics of a divide-by-4 injection-locked frequency divider (ILFD). It was implemented in the TSMC 0.18 μm CMOS process as mentioned chip above. High supply voltage was applied to excite high RF voltage stress on the ILFD. ILFDcore-current and power consumptions decrease with stress time. This locking range degradation is caused by the transconductance degradation of injection MOSFETs and low ILFD voltage swing.

Lastly, over-voltage stress was applied to a dual-resonance injection-locked frequency divider (ILFD) to study the post-stress RF performance. The ILFD was implemented in the TSMC 0.18 μm 1P6M CMOS process and it was stressed at the supply voltage of 2.3V for 5 hours. The stress reduces both the high-frequency and low-frequency band locking ranges. The phase noises in the free-running and locked state decrease with stress time.

Abstract Table of Contents List of Figures List of Table Chapter 1 Introduction 1.1 Research Concept 1.2 Thesis Organization Chapter 2 Principles and Design Concepts of Voltage-Controlled Oscillators 2.1 Basic Theory of Oscillators 2.2 Type of Oscillators 2.2.1 LC-Tank Oscillator 2.2.2 Ring Oscillator 2.3 Important Parameters of VCO 2.3.1 Phase Noise 2.3.2 Tuning Range 2.3.3 Tuning Linearity 2.3.4 Figure of Merit [dBc/Hz] 2.3.5 RF Frequency [Hz] 2.3.6 RF Power [dBm] 2.3.7 Power Dissipation [mW] 2.3.8 Harmonic/spurious [dBc] 2.3.9 Quality Factor 25 2.4 Conventional structures of the LC Oscillator 2.5 Dual-Band Resonator 2.6 Kinds of Noise 2.6.1 Thermal noise 2.6.2 Flicker noise 2.7 Phase Noise in Wireless Communication 2.8 Inductor and Transformer 2.8.1 Inductor 2.8.2 Transformer 2.9 Capacitor and Varactor 2.9.1 Capacitor 2.9.2 Varactor 2.10 Resistor Chapter 3 Principles and Design Concepts of Injection Locking Frequency Divider 3.1Introduction 3.2Principle of Injection Locked Frequency Divider 3.3 Locking Range 3.4 Direct ILFD Chapter 4 Divide-by-4 Injection-Locked Frequency Divider 4.1 Introduction 4.2 Circuit Design 4.3 Measurement Results Chapter 5 Experimental Study of a Hot-Carrier Stressed Push-Push Divide-by-4 Injection-Locked Frequency Divider 5.1 Introduction 5.2 Circuit Design 5.3 Measurement Results Chapter 6 Over-Voltage Stressed RF Performance of Dual-Band Injection-Locked Frequency Divider 6.1 Introduction 6.2 Circuit Design 6.3 Measurement Results Chapter 7 Conclusion References

[1] B. Razavi, RF Microelectronics, Upper Saddle River, NJ: Prentice Hall, 1998.
[2] N. M. Nguyen, and R. G. Meyer, “Start-up and frequency stability in high-frequency oscillators,” IEEE J. Solid-State Circuits, vol. 27, no. 5, pp. 810−820, May 1992.
[3] B. Razavi, Design of Analog CMOS Integrated Crcuits, MC Graw Hall, 2001.
[4] J. R. Long, “Monolithic transformers for silicon RF IC design," IEEE J.Solid-State Circuits, vol. 35, pp. 1368-1382, 2000.
[5] A .Zolfaghari, A. Chan, and B. Razavi, “Stacked inductors and transformers in CMOS technology,” IEEE J. Solid-State Circuits, vol. 36, no. 4, pp. 620-628, 2001.
[6] P. Andreani and S. Mattisson, “On the use of MOS varactors in RF VCOs,” IEEE J. Solid-State Circuits, vol. 35, no. 6, pp. 905−910, Jun. 2000.
[7] J. J. Rael and A. A. Abidi, “Physical processes of phase noise in differential LC Oscillators,” IEEE Custom Integrated Circuits Conference, 2000, pp. 569−572.
[8] T. Lee and A. Hajimiri, “Oscillator phase noise: a tutorial,” IEEE J. Solid-State Circuits, vol. 35, no. 3, pp. 326−336, Mar. 2000.
[9] A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179−194, Feb. 1998.
[10] B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw Hill, 2001.
[11] D. Hauspie, E.-C. Park, and J. Craninckx, “Wide-band VCO with simultaneous switching of frequency band, active core, and varactor size,” IEEE J. Solid-StateCircuits, vol. 42, no. 7, pp. 1472–1480, Jul. 2007.
[12] P.-C. Huang, M.-D. Tsai, H. Wang, C.-H. Chen, and C.-S. Chang, “A 114GHz VCO in 0.13μm CMOS technology,” IEEE International Solid-State Circuits Conference, vol. 1, pp.404-606, 6-10, Feb. 2005.
[13] T. H. Lee, The Design of CMOS Radio Frequency Integrated Circuits, Cambridge University Press, 1998.
[14] M. Tiebout, “A CMOS direct injection-locked oscillator topology as high-frequency low-power frequency divider,” IEEE J. Solid-State Circuits, vol. 39, no. 7, pp. 1170–1174, Jul. 2004.
[15] H. Wu and A. Hajimiri, “A 19 GHz 0.5mW 0.35 μm CMOS frequency divider with shunt-peaking locking-range enhancement,” ISSCC Tech. Dig., pp. 412–413. Feb. 2001.
[16] J. Craninckx and M. S. J. Steyaert, “A 1.75-GHz/3-V dual-modulus divide-by- 128/129 prescaler in 0.7-μm CMOS,” IEEE J. Solid-State Circuits, vol. 31, no. 7, pp. 890−897, July 1996.
[17] Q. Huang and R. Rogenmoser, “Speed optimization of edge-triggered CMOS circuits for gigahertz single-phase clocks,” IEEE J. Solid-State Circuits, vol. 31, no. 3, pp. 456−463, Mar. 1996.
[18] J. Lee and B. Razavi, “A 40 GHz frequency divider in 0.18-μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 39, no. 4, pp. 594−601, Apr. 2004.
[19] H. R. Rategh and T. H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, no. 6, pp. 813−821, Jun. 1999.
[20] H. D. Wohlmuth and D. Kehrer, “A high sensitivity static 2:1 frequency divider up to 27 GHz in 120 nm CMOS,” IEEE European Solid State Circuits Conference (ESSCIRC), pp. 823−826, Sept. 2002.
[21] M. Tiebout, “A 480 μW 2 GHz ultra low power dual-modulus prescaler in 0.25 μm standard CMOS,” IEEE International Symposium on Circuit and System (ISCAS), , vol. 5, pp. 741−744 May 2000.
[22] R. J. Betancourt-Zamora, S. Verma, and T. H. Lee, “1 GHz and 2.8 GHz CMOS injection-locked ring oscillator prescalers,” IEEE Symposium on VLSI Circuits, pp.47−50, Jun. 2001.
[23] P. Kinget, R. Melville, D. Long, and V. Gopinathan, “An injection locking scheme for precision quadrature generation,” IEEE J. Solid-State Circuits, vol. 37, no. 7, pp. 845−851, Jul. 2002.
[24] W. Z. Chen and C. L. Kuo, “18 GHz and 7 GHz superharmonic injection-locked dividers in 0.25 μm CMOS technology,” IEEE European Solid State Circuits Conference (ESSCIRC), pp. 89−92, Sept. 2002.
[25] H. Wu, “Signal generation and processing in high-frequency/high-speed
silicon-based integrated circuits,” PhD thesis, California Institute of Technology, 2003.
[26] R. Adler, “A study of locking phenomena in oscillators,” Proc. IEEE, vol. 61, pp.1380-1385, Oct. 1973.
[27] H. M. Greenhouse, “Design of planar rectangular microelectronic inductors,” IEEE Transactions on Parts, Hybrids, and Packaging, vol. 10, pp. 101-109, Jun 1974.
[28] S. H. Lee, S. L. Jang, and Y. H. Chung, “A low voltage divide-by-4 injection locked frequency divider with quadrature outputs,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 5, pp. 373–375, May 2007.
[29] K. Yamamoto and M. Fujishima, “70 GHz CMOS harmonic injectionlocked divider,” in IEEE Int. Solid-State Circuits Conf. Dig., pp. 600–601, Feb. 2006.
[30] S.-L. Jang, C.-H. Liu, C.-W. Chang, and M.-H. Juang, " A low voltage, low power divide-by-4 LC-tank injection-locked frequency divider, " Int. J. Electronics., Vol. 98 4, p.521-527, April 2011.
[31] S.-L. Jang, C. C. Liu and C.-W. Chung, ” A tail-injected divide-by-4 SiGe HBT injection locked frequency divider,” IEEE Microw. Wireless Compon. Lett., pp. 236-238, April, 2009.
[32] L. Wu, and H. C. Luong, ‘Analysis and design of a 0.6 V 2.2 mW 58.5-to-72.9 GHz divide-by-4 injection-Llcked frequency divider with harmonic boosting’, IEEE Trans. Circuits and Systems-Part I, Regular Papers, vol. 60, no. 8, pp. 2001-2007, Aug. 2013.
[33] S.-L. Jang, and C.-C. Fu, ” Wide locking range divide-by-4 LC-tank injection-locked frequency divider using series-mixers,” published on-line, Analog Integr Circ Sig Process., 2013.
[34] C.-W. Chang and S.-L. Jang,” LC-Tank divide-by-4 injection-locked frequency divider using the 2nd harmonic feedback,” Int. J. Electronics., published online, 2013.
[35] M.-C. Chuang, J.-J. Kuo, C.-H.Wang, and H. Wang, ”A 50 GHz divide-by-4 injection lock frequency divider using matching method’, IEEE Microw. Wireless Compon. Lett., vol. 18, no. 5, pp. 344–346, May 2008.
[36] C.-W. Chang and S.-L. Jang,” LC-Tank divide-by-4 injection-locked frequency divider using the 2nd harmonic feedback,” Int. J. Electronics., vol. 101,no. 2, pp. 204-211, 2014.
[37] S.-L. Jang, and C.-C. Fu, ” Wide locking range divide-by-4 LC-tank injection-locked frequency divider using series-mixers,”, Analog Integr Circ Sig Process., Volume 78, Issue 2, pp 523-528, 2013. February 2014.
[38] Z. Jin, J. D Cressler, W. Abadeer, X. Liu, M. Hauser, and A. J. Joseph, “Hot carrier stress induced low-frequency noise degradation in 0.13μm and 0.18 μm RF CMOS technologies,” IEEE Int. Reliability Physics Symp., pp. 440 – 444, 2004.
[39] E. Sheehan, P. K. Hurley, and A Mathewson,”Hot carrier degradation mechanisms in sub-micron p channel MOSFETs: Impact on low frequency (1/f) noise behaviour,” Microelectronics Reliability, vol. 38, no. 6, pp. 931-936(6), June 1998.

無法下載圖示 全文公開日期 2019/02/07 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE