簡易檢索 / 詳目顯示

研究生: 郭俊資
Jiun-Tzu Kuo
論文名稱: 稀土元素(氧化鑭)對Ti-6Al-4V合金表面被覆層磨耗性能之影響
The Effects of Rare Earth Elements (La2O3) on Wear Performance of Ti-6Al-4V alloy Clad by Wear Resistant Materials
指導教授: 林原慶
Yuan-Ching Lin
口試委員: 蘇侃
Hon So
呂道揆
none
向四海
Su-Hai Hsiang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 111
中文關鍵詞: 被覆鈦合金磨耗
外文關鍵詞: Cladding, Wear, Titanium alloy
相關次數: 點閱:270下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文探討添加不同比例稀土元素(氧化鑭),對於Ti-6Al-4V合金表面氬銲被覆硼化鎢(WB)陶瓷被覆層之顯微結構與磨耗行為的影響。並找出影響耐磨耗能力之主要關鍵,以做為Ti-6Al-4V合金表面耐磨耗改質的依據。
研究結果顯示,WB系列之被覆層則屬於析出強化型機構。在WB被覆層中添加適量之氧化鑭(La2O3)可以使基地的顯微組織微細化,並促進析出物之形成。添加氧化鑭(La2O3)的WB被覆層內的析出相較粗大,具較佳之機械互鎖效應,在低滑動速度下(0.11m/s),以添加4.5%氧化鑭之WB被覆層效果最佳,但在高滑動速度下時(0.22m/s),反而以3.0%氧化鑭之WB被覆層有最佳的耐磨耗能力。適量之氧化鑭(La2O3),可使其被覆層之耐磨耗能力有效地提升。


This thesis investigates the effect of rare earth (La2O3) on microstructure morphology and wears resistance of clad layer for Ti-6Al-4V alloy clad with WB powder. In addition, the major factors that influence wear performance of clad layer can be found in this study.
According to the results of this study, WB clad layers was strengthened by the precipitation of reinforcing phases. The results showed that adding suitable amount of La2O3 can promote microstructure refining and precipitates growing in WB clad layer. Thicker precipitates possess better mechanical interlocking effect and can increase significantly the wear-resistance ability in WB cladding specimens. Under the lower sliding speed, WB-3.0% La2O3 clad layer indicated the best wear resistance performance. However, WB-4.5% La2O3 appeared the excellent wear resistance ability when sliding in the higher sliding speed. With moderate amount of La2O3, therefore, the wear resistance could be improved considerably.

目錄 中文摘要……………………………………………………………... Ⅰ 英文摘要……………………………………………………………... Ⅱ 致謝…………………………………………………………………... III 目錄…………………………………………………………………... IV 表索引………………………………………………………………... VI 圖索引………………………………………………………………... VII 第一章 前 言……………………………………………………... 1 第二章 文獻回顧…………………………………………………... 3 2-1 表面被覆技術之介紹…………………….…………... 3 2-2 惰氣鎢極電弧銲被覆的特點…………….…………... 4 2-3 熔融銲接的凝固特徵與形態…………….…………... 6 2-3-1顯微結構……………………………………….. 6 2-3-2銲道外觀形態………………………………….. 6 2-4 基材鈦合金之介紹…………………………………… 6 2-5 被覆之陶瓷粉末的特性……………………………… 8 2-6 稀土元素…………………………………………….... 8 2-6-1稀土元素的種類……………………………........ 8 2-6-2稀土元素在表面改質的相關研究…………….... 9 2-7 被覆添加之稀土元素的特性……………………….... 12 2-8 各種製程參數對被覆層硬度之影響………………… 13 2-9被覆層強化機構……………………………………..... 14 2-10 磨耗機構……………………………………..…….... 15 2-11 摩擦理論…………………………………………….. 20 第三章 實驗方法與步驟…………………………………………... 22 3-1 實驗步驟…………………………………………….... 22 3-2 試片製作…………………………………………….... 22 3-2-1基材的製作……………………………………. 22 3-2-2被覆材料的製作………………………………. 22 3-2-3磨耗試片的製作………………………………. 23 3-3 氬銲被覆方法……………………………………….... 24 3-3-1被覆試片的校正……………………………… 24 3-3-2氬銲被覆參數………………………………… 24 3-3-3 熔填材料的成份比例………………..………… 24 3-4 被覆層機械性質測試………………………………… 25 3-5 被覆層顯微組織的觀察與成份分析………………… 25 3-6 磨耗試驗……………………………………………… 25 3-6-1磨耗試驗之條件……………………………… 25 3-6-2磨耗量的量測與計算………………………… 26 3-6-3磨耗表面的觀察……………………………… 27 3-6-4磨耗及分析儀器設備之介紹………………… 27 3-6-4-1 磨耗試驗之儀器……………………… 27 3-6-4-2 分析儀器之介紹……………………… 28 3-7被覆粉末觀察…………………………………………. 29 第四章 結果與討論………………………………………………... 29 4-1被覆層顯微組織與成份分析………………………… 29 4-2被覆層之X-ray分析…………………………………... 35 4-3稀土元素對被覆層硬度分佈之影響…………………. 36 4-4不同被覆層的磨耗行為分析…………………………. 37 4-4-1 Ti-6Al-4V合金基材的耐磨耗能力評估……….. 37 4-4-2 Ti-6Al-4V合金基材基材的磨耗分析……..…… 37 4-4-3 WB及WB添加稀土元素被覆層的耐磨耗能力評估………………………………………..……. 39 4-4-4 WB及WB添加稀土元素被覆層的磨耗分析…. 40 4-4-5 WB及WB添加稀土元素被覆層與#400砂紙對磨的耐磨耗能力評估—耐刮磨能力評估… 45 4-4-6 WB及WB添加稀土元素被覆層與#400砂紙對磨的磨耗分析……………………………… 45 第五章 結論與建議………………………………………………... 48 5-1 結論…………………………………………………… 48 5-2 建議…………………………………………………… 49 參考文獻……………………………………………………………... 50

1. K. N. Strafford, P. K. Datta, J. S. Gray, Surface Engineering Practive, 1990.
2. K. Holmberg, A. Matthews, Coatings Tribology, Amsterdam, Elsevier, 1994.
3. I. M. Hutchings, Friction and wear of engineering materials, Boca Raton, CRC Press, 1992.
4. J. W. Giachino, Welding skills and practices, 1986.
5. G. B. Kenneth,Surface Engineering for wear Resistance.
6. H. G. Fan and H. L. Tsai, S. J. Na, Heat transfer and fluid flow in a partially or fully penetrated weld pool in gas tungsten arc welding, International Journal of Heat and Mass Transfer 44,2001,pp 417-428.
7. Y. C. Lin and S. W. Wang, Wear behavior of ceramic powder cladding on an S50C steel surface, Tribology International 36, 2003 ,pp1-9.
8. 林原慶、李明奇、王世衛 , 「中碳鋼表面被覆SiC粉末耐磨耗性能之研究」 中國機械工程學會第十六屆學術研討會論文集 , 第 507-514 頁 , 新竹、清大,1999.
9. S. W. Wang, Y. C. Lin, Y. Y. Tsai, The effects of various ceramic-metal on wear performance of clad layer, the 6th Asia Pacific Conference on Materials Processing (6th APCMP), Taipei, 2003.
10. 林原慶、王世衛、蔡益元 , 合金元素對中碳鋼表面被覆陶瓷粉末耐磨耗性能之影響 中國機械工程學會第十七屆學術研討會論文集 , 第四冊製造與材料 , 789-795 , 高雄、高雄第一科技大學,2000.
11. 伍凱義 , 鑄鐵表面被覆耐磨耗材料之研究 , 國立台灣科技大學碩士論文 ,2000.
12. J. F. Lancaster, Metallurgy of welding, London, Chapman & Hall, 1993.
13. R. L. Sun, D. Z. Yang, L. X. Guo and S. L. Dong, Laser cladding of Ti-6Al-4V alloy with TiC and TiC+NiCrBSi powders, SURFACE & COATINGS TECHNOLOGY 135, 2000,pp 307-312.
14. P. Jiang, X. L. He, X.X. Li, L.G. Yu, H. M. Wang, Wear resistance of a laser surface alloyed Ti-6Al-4V alloy, SURFACE & COATINGS TECHNOLOGY 130, 2000,pp 24-28.
15. Myung-Yong Wee, Yong-Gwon Park, Taek-Soo Kim, Surface properties of CrN-coated Ti-6Al-4V alloys by arc-ion planting process, Mterical letters 59, 2005,pp 876-879.
16. Y. S. Tian ,C. Z. Chen, L. X. Chen, Q. H. Huo, Microstructure and wear properties of composite coating produced by laser alloying of Ti-6Al-4V with graphite and silicon powders 60, 2006,pp 109-113.
17. H. F. Brinson, Engineered materials handbook, Vol. 4, ASM International, Metals Park, Ohio, 1987.
18. K. A. Khor, L. G. Yu, G. Sundararajan, Formation of hard tungsten boride layer by spark plasma sintering boriding, Thin Solid Films 478, 2005,
pp 232-237.
19. 錢景常譯, 「稀土族十五個元素」 , 原子能文庫/鄭振華 主編1969.

20.
W. Weitao, Microstructure of laser-surface-alloyed cast iron with Cr-Al-Y alloy, Surface & Coatings Technology 72, 1995, pp 181-188.
21. Y. Yongqiang, Existent forms and effects of yttrium in laser claddings of MCrAlY, Journal of South China University of Technology (Natural Science) 26, 1998,pp 65-68.
22. Y. Yongqiang, Y. Baohe, Z. Zhihong, Q. Changqing, W. Xiaoguo, Effect of rare-earth element in laser cladding high temperature alloy, Proceedings of SPIE - The International Society for Optical Engineering, 3862, 1999,pp 438-442.
23. C. Xiang, J. Hong, Effects on structure and abrasion resistance of GCr15 steel by surface gas-phase RE diffused permeation with laser melting solidification, High Technology Letters 6, 2000,pp 29-32.
24. Q. B. Zhang , M. L. Sun , X. G. Wei , Y. M. Zhu ,Rare earth elements modification of laser-clad nickel-based alloy coatings, Applied Surface Science, v 174, n 3-4, 2001,pp 191-200.
25. J. Hong, C. Xiang, Z. Liancheng, Influence of surface gas-phase rare earth permeation plus laser melting solidification on microstructure and corrosion resistance of pure iron, Journal of Rare Earths 20, 2002,
pp 120-123.
26. K. L. Wang, Q. B. Zhang, M. L. Sun, X. G. Wei, Microstrural characteristics of laser clad coatings with rare earth metal elements, Journal of Processing Technology 139, 2003,pp 448-452.
27. Y. S. Tian, C. Z. Chen, L. X. Chen, Q. H. Huo, Effect of RE oxides on the microstructure of the coatings fabricated on titanium alloys by laser alloying technique, Scripta Materialia 54, 2006,pp 847-852.
28. Z. Li, Effects of rare-earth element on structure and abrasion resistance of alloy powder spray welding coating, Cailiao Gongcheng/Journal of Materials Engineering, n 3, 1993,pp 9-12.
29. L. Jiajun, Z. Baoliang, Effect of rare-earth elements on the wear resistance of iron base thermal spray-welding coating and its mechanism, Mocaxue Xuebao Tribology 14, 1994,pp 298-305.
30. Zhenyu Zhang, Zhiping Wang, Bumv Liang, Peiqing La, Effects of CeO2 on friction and wear characterisitics of Fe-Ni-Cr alloy coatings, Tribology International 39, 2006,pp 971-978.
31. Limin Zhang, Dongbai Sun, Hongying Yu, Characteristics of plasma cladding Fe-based alloy coatings with rare earth metal elements, Materials Science and Engineering A 452-453, 2007,pp 619-624.
32. Wang Kunlin, Zhang Qingbo, Wei Xingguo, Rare-earth La2O3 modification of laser-clad coatings. JOURNAL OF MATERIALS SCIENCE 33, 1998,pp 3573-3577.
33. Xingong Wang, Min Zhang, Zengda Zou, Shiyao Qu, Microstructure and properties of laser clad TiC+NiCrBSi+rare earth composite coatings, Surface & Coatings Technology 161, 2002,pp 195-199.
34. X. H. Wang, Z. D. Zou, S. L. Song, S. Y. Qu, Modifying effect of rare earth Fe-C-Cr-Si-B laser clad coatings, Journal of Materials Science Letters 22, 2003,pp 713-715.
35. Xiu-Bo Liu, Rong-Li Yu, Effects of La2O3 on microstructure and wear properties of laser clad /Cr7C3/TiC composite coatings on TiAl intermetallic alloy, Materials Chemistry and Physics 101, 2007,
pp 448-454.
36. Y. T. Pei , J. H. Ouyang,T. C. Lei,Y. Zhou , Microstructure of laser-clad SiC-(Ni alloy) composite coating , Materials Science and Engineering A,194,1995,pp 219-224.
37. D. W. Zhang , T. C. Lei , F. J. Li , Laser cladding of stainless steel with Ni-Cr3C2for improved wear performance, Wear, 251, 2001,
pp 1372-1376.
38. C. Tassin, F. Laroudie, M. Pons, L. Lelait, Improvement of wear resistance 316L stainless steel by laser surface alloying, Surface And Coatings Technology 80, 1996,pp 207-210.
39. 劉國雄、林樹均、李勝隆、鄭晃忠、葉鈞蔚, 工程材料科學 , 全華科技圖書股份有限公司 ,1996.
40. G. E. Dieter, Mechanical metallurgy, London, McGraw-Hill, 1988.
41. D. W. Zhang , T. C. Lei , F. J. Li , Laser cladding of stainless steel with Ni-Cr3C2 for improved wear performance, Wear,251, 2001,pp 1372-1376.
42. 李明奇,製程參數對中碳鋼表面被覆SiC粉末耐磨耗性能之影響,國立台灣科技大學碩士論文,1998.
43. H. Sin, N. Saka, N. P. Suh, Abrasive wear mechanisms and the grit size effect, Wear 55 (1) ,1979,pp 163-190.
44. G. W. Stachowiak, A. W. Batchelor, Engineering tribology, Amsterdam, Elsevier, New York, 1993.
45. C. Horst, Tribology: a systems approach to the science and technology of friction, lubrication and wear, Amsterdam, Elsevier Scientific Pub. Co., New York, 1978.
46. V. V. Pokropivny, V. V. Skorokhod, A. V. Pokropivny, Atomistic mechanism of adhesive wear during friction of atomic-sharp tungsten asperity over (114) bcc-iron surface, Materials letters 31 ,1997,pp 49-54.
47. D. Markov, D. Kelly, Mechanisms of adhesion-initiated catastrophic wear: pure sliding, Wear 239, 2000,pp 189-210.
48. T. F. J. Quinn, J. L. Sullivan, D. M. Rowson, Origins and development of oxidational wear at low ambient temperatures, Wear 94, 1984, pp 175-191.
49. T. F. J. Quinn, W. O. Winer, An experimental study of the “hot-spots” occurring during the oxidational wear of tool steel on sapphire, Journal of Tribology 109, 1987,pp 315-320.
50. M. Vardavoulias, The role of hard second phases in the mild oxidational wear mechanism of high-speed steel-based materials, Wear 173, 1994, pp 105-114.
51. T. F. J. Quinn, Computional methods applied to oxidational wear, Wear 199, 1996,pp 169-180.
52. T. F. J. Quinn, Oxidational wear modeling part Ⅲ. The effects of speed and elevated temperatures, Wear 216, 1998, 262-275.
53. T. F. J. Quinn, The oxidational wear of low alloy steels, Tribology International 35, 2002,pp 691-715.
54. J. M. Guilemany, J. M. Miguel, S. Vizcaino, F. Climent, Role of three-body abrasion wear in the sliding wear behavior of WC-Co coatings obtained by thermal spraying, Surface and Coatings Technology 140, 2001,pp 141-146.
55. H. So, The mechanism of oxidational wear, Wear 184, 1995,pp 161-167.
56. N. P. Suh, The delamination theory of wear, Wear 25, 1973,pp 111-124.
57. S. Jahanmir, N. P. Suh, E. P. Abrahamson, Microscopic observations of the wear sheet formation by delamination, Wear 28, 1974,pp 235-249.
58. Bhushan, Bharat, Handbook of Tribology , McGraw-Hill , USA , 1991.
59. GEORGE F. VANDER VOORT., Metallography principles and practice, McGraw-Hill,Taipei,pp.728(1984)
60. Froom Metals Handbook, Vol.7,8th Ed., American Society for Metal 1972.

QR CODE