簡易檢索 / 詳目顯示

研究生: Eka Adi Prasetyo Joko Prawiro
Eka Adi Prasetyo Joko Prawiro
論文名稱: 整合型穿戴式系統在身體活動與上肢復健的應用
Integrated Wearable System for Physical Exercise and Upper Limb Rehabilitation Application
指導教授: 林淵翔
Yuan-Hsiang Lin
口試委員: 林淵翔
Yuan-Hsiang Lin
林昌鴻
Chang-Hong Lin
阮聖彰
Shanq-Jang Ruan
陳維美
Wei-Mei Chen
沈中安
Chung-An Shen
周迺寬
Nai-Kuan Chou
林 立峯
Li-Fong Lin
許維君
Wei-Chun Hsu
陳右穎
You-Yin Chen
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 66
中文關鍵詞: 心率量測計步器姿態辨識上肢復健
外文關鍵詞: HR detection, pedometer, posture detection, upper limb rehabilitation
相關次數: 點閱:319下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在運動和復健中透過生理訊號去監測生命徵象能讓使用者更了解到他們的生理狀態,使用穿戴式裝置搭配智慧型手機的使用更能幫助使用者在進行運動時警覺本身的健康狀態,在中風病人的上肢復健方面也能提供良好的幫助。基於上述理由,本論文開發一套穿戴式系統用於體育鍛鍊和上肢復健的應用上。
    本論文開發一套穿戴式系統其結合即時姿態辨識、心率監測及量化動作監控功能於一穿戴式裝置內,該系統包含一個穿戴式裝置、智慧型手機應用程式以及雲端伺服器。MSP430為一個超低功耗微控制器,其用於穿戴式裝置中負責進行心率計算、計算行走及跑步步數、計算伏地挺身及仰臥起坐次數以及姿態辨識。智慧型手機則藉由無線傳輸接收上述由穿戴式裝置中量測到之資訊並透過UI將資訊提供給使用者,同時智慧型手機會將資料上傳到伺服器。此外在ECG的部分,本論文提出了一套基於ECG的波峰偵測演算法,在使用MIT-BIHST Change資料庫下,能達到99.7%的準確率。此外本論文在跑步機上驗證演算法時,在速度1.8 km/hr到9km/h的速度下,心率量測方面能達到準確度98.89%。俯臥撑,仰臥起坐,行走和行走計數器的準確度分別為99%,100%,99.21%和98.57%。在各項姿態辨識中此系統準確率為100%。
    上肢復健系統,IMU的準確性是使用Qualisys作為黃金標準進行評估,經過實驗,三個不同方向的角度測量誤差的均方根誤差(Root-Mean-Square Error, RMSE)達到1.2度。結果顯示本系統對於上肢復健系統可用於臨床應用。


    Monitoring vital signs along with physical and physiological data during exercise is able to establish the comprehensive health status awareness. The integration of wearable devices and smartphone technology for physical exercise shifts the daily behavior of the user to be more aware about their health and fitness. The implementation of the technology integration moves forward to the field of post-stroke rehabilitation for supporting patient recovery. Based on this consideration, we proposed the wearable integrated system for physical exercise and upper limb rehabilitation application.
    For physical activities detection, we developed an integrated wearable system that combines real-time posture detection, heart rate (HR) monitoring, and quantitative activity monitoring into a robust wearable device. The system includes a wearable device, a smartphone application, and a server. MSP430, an ultralow-power microprocessor, is used in the wearable device to calculate HR, count walking and running steps, tabulate push-ups and sit-ups, and detect posture. Data transmissions are conducted from the wearable device to a smartphone to display the information to the user, record all received data, and upload data to a server. ECG peak detection algorithm achieved accuracy of 99.7% using the MIT-BIH ST Change Database. Accuracy of 98.89% was achieved for HR and 99%, 100%, 99.21%, and 98.57% accuracy for push-up, sit-up, walking, and running counter respectively. The results are 100% accurate in various postures.
    For the upper-limb rehabilitation, the validity of the IMU sensor has been evaluated using Qualisys motion capture camera as gold standard, which the angle measurement error (RMSE) in three different orientations is achieved to be 1.2⁰. The preliminary results show that this system has feasibility to be utilized in the clinical application.

    CHAPTER 1 INTRODUCTION 1 1.1 MOTIVATION AND OBJECTIVE 1 1.2 RELATED WORKS 3 1.3 DISSERTATION FRAMEWORK 5 1.4 DISSERTATION OVERVIEW 6 CHAPTER 2 METHODS 7 2.1 SYSTEM ARCHITECTURE 7 2.2 HARDWARE DESIGN 7 2.3 SENSORS, CIRCUITS, AND MICROCONTROLLER 10 2.4 HR ALGORITHM 11 2.5 POSTURE DETECTION 13 2.6 WALKING AND RUNNING COUNTER 17 2.7 PUSH-UP AND SIT-UP COUNTER 25 2.8 SMARTPHONE APPLICATION AND USER INTERFACE 27 2.9 EXPERIMENT SETUP 29 2.10 EVALUATION METHODS 31 CHAPTER 3 RESULTS 33 3.1 ECG RAW DATA 33 3.2 MIT_BIH ST CHANGE DATABASE 34 3.3 HR DETECTION IN TREADMILL TEST 35 3.4 STEP COUNTING ACCURACY IN TREADMILL TEST 37 3.5 EXTENDED STEP COUNTER AND POSTURE DETECTION 39 CHAPTER 4 DISCUSSION 42 4.1 FEATURES 42 4.2 ACCURACY 43 4.3 ALGORITHM COMPLEXITY AND POWER CONSUMPTION 46 4.4 MOBILITY 48 4.5 USABILITY AND PRACTICALITY 48 CHAPTER 5 PRELIMINARY STUDY OF UPPER LIMB REHABILITATION APPLICATION BASED ON INTEGRATED WEARABLE SYSTEM 49 5.1 SYSTEM ARCHITECTURE 50 5.2 EXPERIMENT SETUP 52 5.3 PRELIMINARY RESULTS 54 CHAPTER 6 CONCLUSIONS 60 REFERENCES 61 ABOUT THE AUTHOR 66 PUBLICATIONS 67

    [1] X. F. Teng, Y. T. Zhang, C. C. Y. Poon, and P. Bonato, “Wearable medical systems for p-health,” IEEE Reviews in Biomedical Engineering, vol. 1, pp. 62-74, 2008.
    [2] S. Neethirajan, “Recent advances in wearable sensors for animal health management,” Sensing and Bio-Sensing Research, vol. 12, pp. 15-29, 2017.
    [3] C. Wang, W. Lu, M. R. Narayanan, D. C. W. Chang, S. R. Lord, S. J. Redmond, and N. H. Lovell, “Low-power fall detector using triaxial accelerometry and barometric pressure sensing,” IEEE Transaction on Industrial Informatics, vol. 12, no. 6, pp. 2302-2311, 2016.
    [4] P. Lorenzi, R. Rao, G. Romano, A. Kita, and F. Irrera, “Mobile device for the real-time detection of specific human motion disorders,” IEEE Sensors Journal, vol. 16, no. 23, pp. 8220-8227, 2016.
    [5] M. Rahman, B. Carbunar, and U. Topkara, “Secure management of low power fitness trackers,” IEEE Transactions on Mobile Computing, vo. 15, no. 2, pp. 447-459, 2016.
    [6] M. Randriambelonoro, Y. Chen, and P. Pu, “Can fitness trackers help diabetic and obese users make sustain lifestyle changes?,” Computer, vol. 50, no. 3, pp. 20-29, 2017.
    [7] L. Mertz, “Convergence revolution comes to wearables: multiple advances are taking biosensor networks to the next level in health care,” IEEE Pulse, vol. 7, no. 1, pp. 13-17, 2016.
    [8] D. Ravi, C. Wong, B. Lo, and G. Z. Yang, “A deep learning approach to on-node sensor data analytics for mobile or wearable devices,” IEEE Journal of Biomedical and Health Informatics, vol. 21, no. 1, pp. 56-64, 2017.
    [9] E. Spano, S. D. Pascoli, and G. Iannaccone, “Low-power wearable ecg monitoring system for multiple-patient remote monitoring,” IEEE Sensors Journal, vol. 16, no. 13, pp. 5452-5456, 2016.
    [10] H. Huang, J. Zhou, W. Li, J. Zhang, X. Zhang, and G. Hou, “Wearable indoor localisation approach in internet of things,” IET Networks, vol. 5, no. 5, pp. 122-126, 2016.
    [11] C. F. Pasluosta, H. Gassner, J. Winkler, J. Klucken, and B. M. Eskofier, “An emerging era in the management of parkinson's disease: wearable technologies and the internet of things,” IEEE Journal of Biomedical and Health Informatics, vol. 19, no. 6, pp. 1873-1881, 2015.
    [12] S. J. Desai, M. Shoaib, and A. Raychowdhury, “An ultra-low power, “always-on” camera front-end for posture detection in body worn cameras using restricted boltzman machines,” IEEE Transactions on Multi-Scale Computing Systems, vol. 1, no. 4, pp. 187-194, 2015.
    [13] F. Hu, L. Wang, S. Wang, X. Liu, and G. He, “A human body posture recognition algorithm based on BP neural network for wireless body area networks,” China Communications, vol. 13, no. 8, pp. 198-208, 2016.
    [14] L. Atallah, B. Lo, R Ali, R. King, and G. Z. Yang, “Real-time activity classification using ambient and wearable sensors,” IEEE Transaction on Information Technology in Biomedicine, vol. 13, no. 6, pp. 1031-1039, 2009.
    [15] Y. Chen, B. Lu, Y. Chen, and X. Feng, “Biocompatible and ultra-flexible inorganic strain sensors attached to skin for long-term vital signs monitoring,” IEEE Electron Device Letters, vol. 37, no. 4, pp. 496-499, 2016.
    [16] M. D. Rienzo, P. Meriggi, F. Rizzo, P. Castiglioni, C. Lombardi, M. Ferratini, and G. Parati, “Textile technology for the vital signs monitoring in telemedicine and extreme environments,” IEEE Transaction on Information Technology in Biomedicine, vol. 14, no. 3, pp. 711-717, 2010.
    [17] M. Villarroel, A. Guazzi, J. Jorge, S. Davis, P. Watkinson, G. Green, A. Shenvi, K. McCormick, and L. Tarassenko, “Continuous non-contact vital sign monitoring in neonatal intensive care unit,” Healthcare Technology Letters., vol. 1, no. 3, pp. 87-91, 2014.
    [18] G. R. Wang, H. G. Han, S. Y. Kim, and T. W. Kim, “Wireless vital sign monitoring using penetrating impulses,” IEEE Microwave and Wireless Components Letters, vol. 27, no. 1, pp. 94-96, 2016.
    [19] D. D. He, E. S. Winokur, and C. G. Sodini, “An ear-worn vital signs monitor,” IEEE Transaction on Biomedical Engineering, vol. 62, no. 11, pp. 2547-2552, 2015.
    [20] L. A. Cobb and W. D. Weaver, “Exercise: a risk for sudden death in patients with coronary heart disease,” Journal of the American College of Cardiology, vol. 7, no. 1, pp. 215-219, 1986.
    [21] JDL, Data Fusion Lexicon. Technical Panel For C3, F.E. White, San Diego, Calif, USA, Code 420, 1991.
    [22] D. L. Hall and J. Llinas, “An introduction to multisensory data fusion,” Proceedings of the IEEE, vol. 85, no. 1, pp. 6-23, 1997.
    [23] M. H. Trivedi, T. L. Greer, T. S. Church, T. J. Carmody, B. D. Grannemann, D. I. Galper, A. L. Dunn, C. P. Earnest, P. Sunderajan, S. S. Henley, and S. N. Blair, “Exercise as an augmentation treatment for nonremitted major depressive disorder: A randomized, parallel dose comparison,” Journal of Clinical Psychiatry, vol. 72, no. 5, pp. 677–684, 2011.
    [24] C. J. Lavie, R. V. Milani, P. Marks, and H. D. Gruiter, “Exercise and the heart: Risks, benefits, and recommendations for providing exercise prescriptions,” Ochsner Journal, vol. 3, no. 4, pp. 207–213, 2001.
    [25] P. J. Teixeira, E. V. Carraca, D. Markland, M. N. Silva, and R. M. Ryan, “Exercise, physical activity, and self-determination theory: A systematic review,” International Journal of Behavioral Nutrition and Physical Activity, vol. 9, pp. 78–108, June 2012.
    [26] C. Krucoff, “Popular, low-cost pedometers: 10,000 steps to a better health,” The Seattle Times, 1999.
    [27] C. Tudor-Locke and D. R. Bassett Jr, “How many steps/day are enough? Preliminary pedometer indices for public health,” Sports Medicine, vol. 34, pp. 1-8, 2004.
    [28] T. C. T. Ho and X. Chen, “ExerTrek: A Portable Handheld Exercise Monitoring, Tracking and Recommendation System,” in Proceedings of the 11th IEEE International Conference on e-Health Networking, Applications and Services (Healthcom ’09), pp. 84-88, 2009.
    [29] Z. Li, “Exercises intensity estimation based on the physical activities healthcare system,” in Proceedings of the IEEE International Conference on Communications and Mobile Computing, vol.3, pp. 132-136, 2009.
    [30] S. M. Fox andW. L. Haskell, “The exercise stress test: needs for standardization,” in Cardiology: Current Topics and Progress, M. Eliakim and H. N. Neufeld, Eds., pp. 149–154, Academic Press, New York, NY, USA, 6th edition, 1970.
    [31] Y. Sun and X. Yu, “An Innovative Nonintrusive Driver Assistance System for Vital Signal Monitoring,” IEEE Journal of Biomedical and Health Informatics, vol. 18, pp. 1932-1939, 2014.
    [32] E. Khan, F. Al Hossain, S. Z. Uddin, S. K. Alam, and M. K. Hasan, “A Robust Heart Rate Monitoring Scheme Using Photoplethysmographic Signals Corrupted by Intense Motion Artifacts,” IEEE Transactions on Biomedical Engineering, vol. 63, pp. 550-562, 2016.
    [33] P. Gupta and T. Dallas, “Feature Selection and Activity Recognition System Using a Single Triaxial Accelerometer,” IEEE Transactions on Biomedical Engineering, vol. 61, pp. 1780-1786, 2014.
    [34] J. Cheng, X. Chen, and M. Shen, “A Framework for Daily Activity Monitoring and Fall Detection Based on Surface Electromyography and Accelerometer Signals,” IEEE Journal of Biomedical and Health Informatics, vol. 17, pp. 38-45, 2013.
    [35] U. Ryu, K. Ahn, E. Kim, M. Kim, B. Kim, S. wo, and Y. Chang, “Adaptive Step Detection Algorithm for Wireless Smart Step Counter,” in Proceedings of the International Conference on Information Science and Applications (ICISA ’13), pp. 1-4, 2013.
    [36] E. A. P. J. Prawiro, C. I. Yeh, N. K. Chou, M. W. Lee, and Y. H. Lin, “Integrated Wearable System for Monitoring Heart Rate and Step during Physical Activity,” Mobile Information Systems, vol. 2016, pp. 1-10, 2016.
    [37] E. A. P. J. Prawiro, N. K. Chou, M. W. Lee, and Y. H. Lin, “A wearable system that detects posture and heart rate: designing an integrated device with multiparameter measurements for better health care,” IEEE Consumer Electronic Magazine, vol. 8, no. 2, pp. 78-83, 2019.
    [38] D. Dobrev, T. Neycheva, and N.Mudrov, “Simple two-electrode biosignal amplifier,” Medical and Biological Engineering and Computing, vol. 43, no. 6, pp. 725–730, 2005.
    [39] E. A. P. J. Prawiro, C.-C. Hu, Y.-S. Chan, C.-H. Chang, and Y.-H. Lin, “A heart rate detection method for low power exercise intensity monitoring device,” in Proceedings of the IEEE International Symposium on Bioelectronics and Bioinformatics (ISBB ’14), pp. 1–4, April 2014.
    [40] R. Libby, “A simple method for reliable footstep detection on embedded sensor platforms,” 2008.
    [41] MIT-BIH ST Change Database, [Online]. Available: www.physionet.org/physiobank/database/mitdb.
    [42] GE Website, [Online]. Available: www3.gehealthcare.com.
    [43] B. Dijkstra, W. Zijlstra, E. Scherder, and Y. Kamsma, “Detection of walking periods and number of steps in older adults and patients with Parkinson’s disease: accuracy of a pedometer and an accelerometry-based method,” Age And Ageing, vol. 37, pp. 436-441, 2008.
    [44] M. L. Moy, A. W. Janney, H. Q. Nguyen, K. R. Matthess, M. Cohen, E. Garshick, and C. R. Richardson, “Use of pedometer and Internet-mediated walking program in patients with chronic obstructive pulmonary disease,” Journal of Rehabilitation Research & Development, vol. 47, pp. 485-496, 2010.
    [45] H. J. Baek, G. S. Chung, K. K. Kim, and K. S. Park, “A smart health monitoring chair for nonintrusive measurement of biological signals,” IEEE Transaction on Information Technology in Biomedicine, vol. 16, pp. 150-158, 2012
    [46] F. Hu, L. Wang, S. Wang, X. Liu, and G. He, “A human body posture recognition algorithm based on BP neural network for wireless body area networks,” China Communications, vol. 13, no. 8, pp. 198-208, 2016
    [47] O. Yurur, C. H. Liu, and W. Moreno, “Light-weight online unsupervised posture detection by smartphone accelerometer,” IEEE Internet of Things Journal, vol. 2, no. 4, pp. 329-339, 2015.
    [48] V. Genovese, A. Mannini, and A. M. Sabatini, “A smartwatch step counter for slow and intermittent ambulation,” IEEE Access, vol. 5, pp. 13028-13037, 2017.
    [49] F. Attal, S. Mohammed, M. Dedabrishvili, F. Chamroukhi, L. Oukhellou, and Y. Amirat, “Physical human activity recognition using wearable sensors,” Sensors, vol. 15, pp. 31314-31338, 2015.
    [50] C. B. Thorup, J. J. Andreasen, E. E. Sørensen, M. Grønkjær, B. I. Dinesen, and J. Hansen, “Accuracy of a step counter during treadmill and daily life walking by healthy adults and patients with cardiac disease,” BMJ Open, vol. 7, pp. 1-11, 2017.
    [51] X. Wang, Q. Gui, B. Liu, Z. Jin, and Y. Chen, “Enabling Smart Personalized Healthcare: A Hybrid Mobile-Cloud Approach for ECG Telemonitoring,” IEEE Journal of Biomedical and Health Informatics, vol. 18, pp. 739-745, 2014.
    [52] V. L. Feigin, M. H. Forouzanfar, R. Krishnamurthi, G. A. Mensah, M. Connor, D. A. Bennett, A. E. Moran, R. L. Sacco, L. Anderson, T. Truelsen, M. O'Donnell, N. Venketasubramanian, S. Barker-Collo, C. M. Lawes, W. Wang, Y. Shinohara, E. Witt, M. Ezzati, M. Naghavi, and C. Murray, “Global and regional burden of stroke during 1990-2010: findings from the global burden of disease Study 2010,” Lancet, vol. 383, no. 9913, pp. 245-254, 2014.
    [53] D. Hebert et al., “Canadian stroke best practice recommendations: Stroke rehabilitation practice guidelines, update 2015,” International Journal of Stroke, vol. 11. No. 4, pp. 459-484, 2016.
    [54] S. O. H. Madgwick, A. J. L. Harrison, and R. Vaidyanathan, “Estimation of IMU and MARG orientation using a gradient descent algorithm,” in Proceeding of the Rehab Week Zurich of the IEEE International Conference on Rehabilitation Robotics, pp. 1-7, 2011.
    [55] A. Brennan, J. Zhang, K. Deluzio, and Q. Li, “Quantification of inertial sensor-based 3D joint angle measurement accuracy using an instrumented gimbal,” Gait & Posture, vol. 34, no. 3, pp. 320-323, 2011.

    無法下載圖示 全文公開日期 2024/08/19 (校內網路)
    全文公開日期 2024/08/19 (校外網路)
    全文公開日期 2024/08/19 (國家圖書館:臺灣博碩士論文系統)
    QR CODE