簡易檢索 / 詳目顯示

研究生: 徐鈺焜
Yu-Kun Xu
論文名稱: 腰椎後方固定器骨釘參數之有限元素分析
Parametric Investigation about the Traditional and Cortical Bone Trajectory Screws of Transpedicular Fixation: A Finite-element Study
指導教授: 林上智
Shang-Chih Lin
口試委員: 蔡文基
Wen-Chi Tsai
李維楨
Wei-Chen Lee
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 醫學工程研究所
Graduate Institute of Biomedical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 85
中文關鍵詞: 腰椎傳統軌跡皮質骨軌跡有限元素分析
外文關鍵詞: Lumbra, Traditional Trajectory, Cortical Bone Trajectory, finite-element method
相關次數: 點閱:321下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在評估植入物對於人體的運動學及動力學時,常會使用的方法有實際的生物力學實驗或虛擬的有限元素分析,進而得到植入物的效果及影響;在實際實驗中,常會伴隨著浩大的實驗設計與資金,並且資料紀錄與保存較為困難,但對於有限元素分析而言,只需要建構出幾何模型與輸入各項分析參數,就能得出接近於實際測試的結果,除了資料較能數據化之外,還能將所有數據記錄於電腦當中,因此有限元素常被用於醫學領域論文中。
    骨融合手術對於脊椎手術固定節與手術鄰近節的效果與影響常被臨床醫生提出討論,而常見的固定器植入方式有傳統軌跡(Traditional Trajectory)與較新型微創手術的皮質骨軌跡(Cortical Bone Trajectory)等兩種,但鮮少有論文直接討論兩者運動學及動力學的差異,大多是比較這兩種手術骨釘的抗拔出應力,或是過分高估手術植入骨釘的直徑或長度,甚至進行有限元素分析的模型太過於簡陋,導致運動學或動力學傳遞上呈現的結果常會有所錯誤或不精準。故本研究使用完整的五節腰椎模型,並且參數化骨釘的直徑、長度及植入軌跡,進行分析比較傳統軌跡與皮質骨軌跡之運動學及動力學的差異與討論。
    皮質骨軌跡是目前臨床上最新穎的腰椎微創手術,故許多臨床醫師慢慢以此手術軌跡為主,但其使用的骨釘規格常會受到椎弓根大小的限制,因此在臨床上醫師時常會使用較小的直徑進行手術上的植入,避免打穿椎弓根或是椎體,但在論文參考或本研究分析結果時,常發現此類的骨釘常會因為太細,導致應力過大的情形發生,以至於在實際使用上,骨釘有著可能會斷裂的缺點。因此在本研究中,將會對皮質骨軌跡之骨釘進行改善,設計出一款複合式的骨釘,達到在手術時好植入,且具有不容易斷裂的效果,並透過有限元素分析,與改善前的骨釘進行運動學及動力學的比較,希望以此新式樣的骨釘能成為將來皮質骨軌跡使用的骨釘首選。


    In assessing the kinematics and dynamics of implants on the human body, methods often used include actual biomechanical experiments or finite-element method to obtain the effects of the implant; clinical experiments often accompanied by experimental design, funding, data recording and preservation, but for finite-element method, only need to construct geometric models and input various analysis parameters, you can get results close to the actual clinical experiment. Furthermore, digitized data can be recorded for multiple cases comparison or applying more investigation in detail, so finite-element method are often used in medical publications.
    The common-used bone fusion surgery today has a Traditional Trajectory and a Cortical Bone Trajectory, and the performance or effect on the fixed section of the intervertebral disc and the operational adjacent section are most clinicians’ concern. However, few papers directly discuss (1) the differences between kinematics and dynamics, or (2) overestimate the diameter or length of surgical implants, and (3) even the model of finite-element method is too simple which leads to analysis bias. Therefore, this study used a complete five-segment lumbar vertebrae and sacral lumbar vertebrae model to analyze and compare the kinematics and dynamics differences between the Traditional Trajectory and the Cortical Bone Trajectory by parameterizing diameter, length and implantation trajectory of screws.
    Currently, Cortical Bone Trajectory is a relatively new clinical minimally invasive surgery for the lumbar spine; therefore, many clinicians are using this surgical method gradually. However, the size of the bone screw is often limited by the size of the pedicle, so the screw with smaller diameters are used for surgical application to avoid penetrating the vertebral pedicles or vertebral body. However, most of researches indicate that bone screws with smaller diameters results in excessive stress and might break in actual use. Therefore, in this study, the pedicle screw of the cortical bone tracking will be improved, and a composite screw will be designed to achieve good performance during surgery, and it is not easy to break. Through finite-element method, we compared between the kinematics and kinetics of the pedicle screw before and after our improvement. We expect this latest style of screw can be the first choice in the future.

    摘要 I Abstract II 致謝 IV 目錄 V 圖目錄 VIII 表目錄 XI 第一章 緒論 1 1-1 研究背景與動機 1 1-2 腰椎解剖、病理及生物力學 2 1-2-1 肌肉與韌帶 3 1-2-2 脊椎骨 5 1-2-3 椎間盤 7 1-3 腰椎靜態固定器介紹 9 1-4 腰椎靜態固定器植入軌跡介紹 11 1-5 論文架構 12 第二章 文獻回顧 14 2-1 手術鄰近節椎間盤問題 14 2-2 傳統軌跡與皮質骨軌跡效益問題 16 2-2-1 骨釘抗拔出效果 16 2-2-2 腰椎活動度影響 17 第三章 研究材料與方法 18 3-1 腰椎有限元素模型的建立 18 3-1-1 幾何模型建立 19 3-1-2 零件材料設定 21 3-1-3 零件邊界設定 21 3-1-4 零件介面設定 22 3-1-5 網格參數設定 23 3-1-6 肌肉及韌帶組模型 24 3-1-7 有限元素模型控制法說明 26 3-1-8 有限元素模型驗證 27 3-2 靜態固定器模型建立 27 3-2-1 植入軌跡說明 28 3-2-2 骨釘規格說明 29 3-2-3 骨釘材料設定 29 3-2-4 骨釘介面條件設定 30 3-3 腰椎生物力學結果參數選定 30 第四章 結果 32 4-1 腰椎有限元素模型驗證 32 4-2 椎間盤活動角度 33 4-3 椎間盤應力 35 4-4 小面關節接觸力 40 4-5 骨釘應力 42 第五章 討論 45 5-1 扭轉運動補償至之下鄰近節問題 45 5-2 側彎運動之TT固定效果最好問題 47 5-3 參數調整與固定效果探討 50 5-3-1 骨釘直徑關聯性 50 5-3-2 骨釘長度關聯性 52 5-3-3 植入軌跡關聯性 53 5-4 不同運動之固定器受力情形 55 5-3-1 前彎運動 56 5-3-2 後仰運動 57 5-3-3 側彎運動 58 5-3-4 扭轉運動 59 5-5 骨釘與骨頭鎖定情形 61 5-6 既有骨釘臨床使用問題 62 5-6-1 複合式骨釘設計概念 63 5-6-2 椎間盤活動角度 64 5-6-3 椎間盤應力 65 5-6-4 小面關節接觸力 66 5-6-5 骨釘應力 67 第六章 結論與未來展望 68 6-1 結論 68 6-2 未來展望 69 第七章 參考文獻 70

    [1] Carola R, Harley JP, Noback CR: Human anatomy and physiology; 1992.
    [2] chang Yt: Low Back Pain with With Whole-Body Vibration and Manual Materials Handling. Taipei Medical University; 2008
    [3] 張俊詳: 肌肉骨骼系統解剖學:構造與功能; 2006.
    [4] P.Schnuerer A, Gallego PAJ, Manuel MDC: Anatomy of the Spine & Related Structures
    [5] Chen CS: Biomechanical analysis of the lumbar spinal fusion. National Yang-Ming University; 2001.
    [6] Teng JM: Finite Element Analysis in Cervical Interbody Fusion Cage Subsidence. National Yang-Ming University; 2004.
    [7] Prohealthsys [http://www. Prohealthsys.com]
    [8] 洪一智: Finite Element Analysis of the Lumbar Interspinous Process Distractor. 國立中央大學; 2008.
    [9] Frymoyer JW, Pope MH, Clements JH, Wilder DG, MacPherson B, Ashikaga T: Risk factors in low-back pain. An epidemiological survey. The Journal of bone and joint surgery American volume 1983, 65(2):213-218.
    [10] spineuniverse [http://www.spineuniverse.com]
    [11] Fujiwara A, Lim TH, An HS, Tanaka N, Jeon CH, Andersson GB, Haughton VM: The effect of disc degeneration and facet joint osteoarthritis on the segmental flexibility of the lumbar spine. Spine 2000, 25(23):3036-3044.
    [12] Ruberte LM, Natarajan RN, Andersson GB: Influence of single-level lumbar degenerative disc disease on the behavior of the adjacent segments--a finite element model study. Journal of biomechanics 2009, 42(3):341-348.
    [13] Elfering A, Semmer N, Birkhofer D, Zanetti M, Hodler J, Boos N: Risk factors for lumbar disc degeneration: a 5-year prospective MRI study in asymptomatic individuals. Spine 2002, 27(2):125-134.
    [14] spine-health [http://www.spine-health.com]
    [15] Lee CK: Accelerated degeneration of the segment adjacent to a lumbar fusion. Spine 1988, 13(3):375-377.
    [16] Chou WY, Hsu CJ, Chang WN, Wong CY: Adjacent segment degeneration after lumbar spinal posterolateral fusion with instrumentation in elderly patients. Archives of orthopaedic and trauma surgery 2002, 122(1):39-43.
    [17] Schlegel JD, Smith JA, Schleusener RL: Lumbar motion segment pathology adjacent to thoracolumbar, lumbar, and lumbosacral fusions. Spine 1996, 21(8):970-981.
    [18] Biomechanical evaluation of the fixation strength of lumbar pedicle screws using cortical bone trajectory: a finite element study. Acta Neurochir (2016) 158:465–471;DOI 10.1007/s00701-016-2705-8
    [19] https://www.facebook.com/spinewei/posts/275934039576659/
    [20] Weinstein JN, Spratt KF, Spengler D, Brick C, Reid S: Spinal pedicle fixation: reliability and validity of roentgenogrambased assessment and surgical factors on successful screw placement. Spine (Phila Pa 1976) 13:1012–1018, 1988
    [21] Cho KS, Kang SG, Yoo DS, Huh PW, Kim DS, Lee SB: Risk factors and surgical treatment for symptomatic adjacent segment degeneration after lumbar spine fusion. Journal of Korean Neurosurgical Society 2009, 46(5):425-430.
    [22] Phillips FM, Reuben J, Wetzel FT: Intervertebral disc degeneration adjacent to a lumbar fusion. An experimental rabbit model. The Journal of bone and joint surgery British volume 2002, 84(2):289-294.
    [23] Cunningham BW, Gordon JD, Dmitriev AE, Hu N, McAfee PC: Biomechanical evaluation of total disc replacement arthroplasty: an in vitro human cadaveric model. Spine 2003, 28(20):S110-117.
    [24] Weinhoffer SL, Guyer RD, Herbert M, Griffith SL: Intradiscal pressure measurements above an instrumented fusion. A cadaveric study. Spine 1995, 20(5):526-531.
    [25] Rohlmann A, Calisse J, Bergmann G, Weber U: Internal spinal fixator stiffness has only a minor influence on stresses in the adjacent discs. Spine 1999, 24(12):1192-1195; discussion 1195-1196.
    [26] Chen CS, Feng CK, Cheng CK, Tzeng MJ, Liu CL, Chen WJ: Biomechanical analysis of the disc adjacent to posterolateral fusion with laminectomy in lumbar spine. J Spinal Disord Tech 2005, 18(1):58-65.
    [27] Biomechanical evaluation of the fixation strength of lumbar pedicle screws using cortical bone trajectory: a finite element study. J Neurosurg Spine 23:471–478, 2015
    [28] Hirano T, Hasegawa K, Takahashi HE, Uchiyama S, Hara T, Washio T, et al: Structural characteristics of the pedicle and its role in screw stability. Spine (Phila Pa 1976) 22:2504–2510, 1997
    [29] Zindrick MR, Wiltse LL, Widell EH, Thomas JC, Holland WR, Field BT, et al: A biomechanical study of intrapeduncular screw fixation in the lumbosacral spine. Clin Orthop Relat Res (203):99–112, 1986
    [30] Santoni BG, Hynes RA, McGilvary KC, Rodriguez-Canessa G, Lyon AS, Henson MAW, Womack WJ, Puttlitz CM (2009) Cortical bone trajectory for lumbar pedicle screws. Spine J 9:366–373
    [31] Biomechanics of Lumbar Cortical Screw–Rod Fixation Versus Pedicle Screw–Rod Fixation With and Without Interbody Support. SPINE Volume 38, Number 8, pp 635–641 ©2013, Lippincott Williams & Wilkins
    [32] Kinematic and Mechanical Comparisons of Lumbar Hybrid Fixation Using Dynesys and Cosmic Systems. SPINE Volume 39 , Number 15 , pp E878 - E884. 2014, Lippincott Williams & Wilkins
    [33] A biomechanical comparison between cortical bone trajectory fixation and pedicle
    screw fixation. (2015) 10:125 DOI 10.1186/s13018-015-0270-0
    [34] Ruberte LM, Natarajan RN, Andersson GB: Influence of single-level lumbar degenerative disc disease on the behavior of the adjacent segments--a finite element model study. Journal of biomechanics 2009, 42(3):341-348
    [35] Zhang QH, Teo EC: Finite element application in implant research for treatment of lumbar degenerative disc disease. Medical engineering & physics 2008, 30(10):1246-1256.
    [36] 實威國際: Solidworks Simulation原廠教育手冊; 2011
    [37] Shirazi-Adl A, El-Rich M, Pop D, Parnianpour M: Spinal muscle forces, internal loads and stability in standing under various postures and loads¡Xapplication of kinematics-based algorithm. European Spine Journal 2005, 14(4):381-392.
    [38] Gudavalli MR, Triano JJ: An analytical model of lumbar motion segment in flexion. Journal of manipulative and physiological therapeutics 1999, 22(4):201-208.
    [39] Yamamoto I, Panjabi MM, Crisco T, Oxland T: Three-dimensional movements of the whole lumbar spine and lumbosacral joint. Spine 1989, 14(11):1256-1260.
    [40] https://zh.wikipedia.org/wiki/%E9%88%A6-6%E9%8B%81-4%E9%87%A9

    無法下載圖示 全文公開日期 2024/07/17 (校內網路)
    全文公開日期 2024/07/17 (校外網路)
    全文公開日期 2024/07/17 (國家圖書館:臺灣博碩士論文系統)
    QR CODE