簡易檢索 / 詳目顯示

研究生: 謝妏君
Wen-chun Hsieh
論文名稱: 鹼性磷酸酶固定於幾丁聚醣微孔洞性薄膜對骨組織工程的影響
Immobilization of alkaline phosphatase on microporous chitosan membranes for bone tissue engineering
指導教授: 洪伯達
Po-da Hong
傅鍔
Earl Fu
口試委員: 高震宇
Chen-yu Kao
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 醫學工程研究所
Graduate Institute of Biomedical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 74
中文關鍵詞: 幾丁聚醣鹼性磷酸酶骨組織工程焦磷酸鹽無機磷酸鹽
外文關鍵詞: Chitosan(CS), Alkaline phosphatase(ALP), pyrophosphate (PPi), inorganic phosphate (Pi), bone tissue engineering
相關次數: 點閱:415下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

幾丁聚醣在很多領域被證實是一種生物相容性高的材料,不但自然界含量豐富,取得容易,也可以被製作成各種臨床所需的樣式,實為一值得發展之天然資源,常用來當作骨組織工程的支架,但幾丁聚醣本身並不具有骨引導性。鹼性磷酸酶活性是一個廣泛被大家知道用來當作造骨母細胞分化性指標,它最主要的作用機制為降解焦磷酸鹽 (氫氧基磷灰石抑制物),產生無機磷酸鹽(氫氧基磷灰石促進物),而氫氧基磷灰石更是自然骨的主要成分之一。所以我們利用冷凍乾燥幾丁聚醣膠體製造出幾丁聚醣孔洞膜,並藉由EDC/NHS化學交聯劑將鹼性磷酸酶固定於幾丁聚醣薄膜上,在細胞實驗方面探討此複合材料對於造骨母細胞的增生與鈣化是否有促進的效果。實驗結果發現,利用冷凍乾燥方法製備的幾丁聚醣為多孔性,孔洞大小約為80~100μm。利用化學交聯方法成功的讓鹼性磷酸酶固定於幾丁聚醣薄膜並在35天後仍保持40%活性。在電子顯微鏡下觀察大鼠頭蓋骨造骨母細胞貼附於不同幾丁聚醣薄膜的形態,發現有固定鹼性磷酸酶的組別在第三天時出現了細胞聚集並有分泌基質包圍的現象,而單純幾丁聚醣的組別則在第七天才開始有此現象產生。在造骨母細胞的增生表現,利用MTS觀察到,有固定鹼性磷酸酶的組別,在第三天與第七天時所偵測到的細胞活性較只有幾丁聚醣以及吸附鹼性磷酸酶的組別低;而DAPI螢光染色無法觀察到確切的細胞貼附數量,但也發現在第三天時,固定鹼性磷酸酶組別最先觀察到有細胞聚集的現象。而在誘導造骨母細胞鈣化方面,我們利用Von kossa染色以及測定鈣離子濃度的方法分別觀察到,有固定鹼性磷酸酶的幾丁聚醣組別都會提早偵測到鈣質的沉積以及較高的鈣離子表現。此外,我們也利用了半定量之RT-PCR方法測定細胞貼附於不同組別幾丁聚醣薄膜上,對於骨生成表現基因Cbfa-1以及OCN的影響 ,結果顯示,固定鹼性磷酸酶的組別在不同的時間點都展現了較高的骨生成表現mRNA表現量。在細胞實驗中,我們證明了此種鹼性磷酸酶/幾丁聚醣的複合材料對於頭蓋骨造骨母細胞的增生沒有明顯的促進效果,但對於誘導造骨母細胞鈣化的效果明顯優於幾丁聚醣薄膜。因此,此種鹼性磷酸酶/幾丁聚醣的複合材料為具有潛力成為骨組織工程之再生支架。


Chitosan (CS) has been proved as a biocompatible material in several fields. It’s abundant in nature and easy to get for clinical use. Although chitosan is frequently used as a scaffold for bone tissue engineering, it still exists some limitations with its non-osteoconduction. Alkaline phosphatase (ALP) is a well-known marker for osteoblast differentiation. One of its primary mechanism is to promote bone formation by degrading inorganic pyrophosphate (PPi), an inhibitor of hydroxyapatite formation, and generating inorganic phosphate (Pi), an inducer of hydroxyapatite formation. The hydroxyapatite is one of the main components in natural bone. In this study we fabricated microporous chitosan membranes by freeze-drying of chitosan gels and immobilized alkaline phosphatase on membranes by using EDC /NHS (a chemical cross-linking agent) to investigate that whether the chitosan/ALP composite materials would promote the proliferation and mineralization of osteoblasts in vitro. The results demonstrated that the chitosan membranes fabricated by the freeze-drying method have three-dimensional porous and interconnected structures with an average pore size of 80~120 μm. By using chemical cross-link methods for alkaline phosphatase immobilization on chitosan membranes, we found that 40% of ALP activity remained on membranes after 35 days. Scanning electron microscopic (SEM) observation showed that the primary calvarial osteoblasts attached, spread and formed multiple layers on the surface of the chitosan membranes. We observed that the cells attached on the ALP-immobilized scaffolds began to aggregate and be surrounded by matrix at day 3, but we found the similar phenomenon in non–ALP -immobilized group at day 7. We also observed calvarial osteoblasts attachment and proliferation by DAPI staining and MTS assay. The results indicated that the cells proliferating on CS/ALP membranes were weaker than the chitosan alone and chitosan absorbed ALP group. The DAPI staining, just as the SEM observation, confirmed that CS/ALP group would promote cells aggregation at day 3. In addition, the ALP immobilized scaffolds showed strong staining in Von kossa mineralization assays and high calcium ion concentration in quantitative calcium assay. Furthermore, cells seeded on immobilized CS/ALP exhibited higher osteoblast marker gene (Cbfa-1 and OCN) expression compared to the CS alone group by semi-quantitative RT-PCR technique. In conclusion, we proved that the chitosan/ALP composite materials can breakthrough the non-osteoconductive limitation of chitosan membrane and promote the rat calvarial osteoblasts mineralization; therefore, this CS/ALP scaffold is considered as a new promising vehicle for bone tissue engineering applications.

中文摘要 I ABSTRACT III 誌謝 V 正文目錄 VII 第一章 前言 1 1.1 骨組織工程 1 1.1.1 組織工程概論 1 1.1.2 骨組織工程 2 1.1.3 造骨母細胞(Osteoblast) 4 1.1.4 骨組織生醫材料的發展 6 1.2 幾丁聚醣(CHITOSAN,CS) 9 1.2.1 幾丁聚醣與幾丁質 9 1.2.2 幾丁聚醣於生醫材料的應用 11 1.2.3 幾丁聚醣於骨組織工程之應用 14 1.3 鹼性磷酸酶(ALKALINE PHOSPHATASE,ALP) 16 1.3.1 鹼性磷酸酶簡介 16 1.3.2 鹼性磷酸酶於骨礦物質化的作用 18 1.4 研究動機與目的 19 第二章 材料與實驗方法 20 2.1 實驗儀器與藥品試劑 20 2.1.1 主要實驗儀器與器材 20 2.1.2 藥品試劑與套組 21 2.2 實驗方法與步驟 23 2.2.1 幾丁聚醣薄膜製備 23 2.2.2 固定Alkaline phosphatase於幾丁聚醣薄膜 23 2.2.3 Alkaline phosphatase殘留活性分析 23 2.2.4 骨母細胞培養 24 2.2.5 材料分析與細胞貼附觀察- 掃描式電子顯微鏡 26 2.2.5.1 薄膜表面及內部孔洞結構觀察 26 2.2.5.2 鹼性磷酸酶固定於薄膜後之結構觀察 26 2.2.5.3 細胞貼附於材料之結構觀察 26 2.2.6 細胞貼附觀察- DAPI 螢光染色分析 26 2.2.7 骨母細胞增生與細胞活性與生長之影響 27 2.2.7.1 建立細胞數標準生長曲線圖(standard curve) 27 2.2.7.2 細胞增生(proliferation)實驗 27 2.2.8 骨母細胞生長於不同組別幾丁聚醣薄膜的誘導骨鈣化分析 28 2.2.8.1 骨結節之組織細胞化學染色(Von kossa staining) 28 2.2.8.2 鈣離子濃度測定(Calcium assay) 29 2.2.9 人類骨肉瘤細胞生長於不同組別幾丁聚醣薄膜對於細胞基因mRNA 的表現 30 2.2.9.1 全核醣核酸 (total RNA) 萃取 30 2.2.9.2 互補去氧核醣核酸(cDNA) 的製作 31 2.2.9.3 聚合酶連鎖反應 (Polymerase Chain Reaction, PCR) 31 2.2.10 統計學分析 (Statistical Analysis) 33 第三章 結果與討論 34 3.1 幾丁聚醣薄膜材料分析 34 3.1.1 掃描式電子顯微鏡 34 3.1.2 固定或吸附鹼性磷酸酶於幾丁聚醣薄膜之ALP活性測定 37 3.2 生物相容性 42 3.2.1 新生胎兒SD rat 頭蓋骨造骨母細胞之初代培養 42 3.2.2 SD rat 頭蓋骨造骨母細胞數標準生長曲線圖 43 3.2.3 不同測試組幾丁聚醣薄膜對造骨母細胞在生長方面的影響 44 3.2.4 利用掃描式電子顯微鏡觀察造骨母細胞貼附之型態變化 46 3.2.5 利用DAPI 螢光染色觀察造骨母細胞貼附於不同測試組幾丁聚醣薄膜 53 3.3 骨質生成表現方面之影響 56 3.3.1 骨結節(鈣離子沉積)組織染色方面的影響-Von kossa staining 56 3.3.2 造骨母細胞在鈣離子沉積方面的影響-Calcium assay 58 3.4 骨生成相關基因表現方面之影響 60 3.4.1 不同測試組幾丁聚醣薄膜對造骨母細胞在 Core binding factor alpha 1 (Cbfa1) mRNA 表現方面的影響 60 3.4.2 不同測試組幾丁聚醣薄膜對造骨母細胞在 Osteocalcin(OCN) mRNA 表現方面的影響 62 第四章 討論 64 第五章 結論 69 第六章 參考文獻 70

(1) Bell, E., Ivarsson B., Merrill C., "Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro." Proc Natl Acad Sci U S A, Vol. 76, No. 3, pp. 1274-1278. (1979)
(2) Lendlein, A., Langer R., "Biodegradable, elastic shape-memory polymers for potential biomedical applications." Science, Vol. 296, No. 5573, pp. 1673-1676. (2002)
(3) Langer, R., Vacanti J. P., "Tissue engineering." Science, Vol. 260, No. 5110, pp. 920-926. (1993)
(4) Giannoudis, P. V., Dinopoulos H., Tsiridis E., "Bone substitutes: an update." Injury, Vol. 36 Suppl 3, No., pp. S20-27. (2005)
(5) Crane, G. M., Ishaug S. L., Mikos A. G., "Bone tissue engineering." Nat Med, Vol. 1, No. 12, pp. 1322-1324. (1995)
(6) Cai, X., Tong H., Shen X., Chen W., Yan J., Hu J., "Preparation and characterization of homogeneous chitosan-polylactic acid/hydroxyapatite nanocomposite for bone tissue engineering and evaluation of its mechanical properties." Acta Biomater, Vol. 5, No. 7, pp. 2693-2703. (2009)
(7) Sims, N., Baron R., "Bone cells and their function." Skeletal growth factors Philadelphia, PA: Lippincott Williams and Wilkins, Vol., No., pp. 1-16. (2000)
(8) Komori, T., Yagi H., Nomura S., et al., "Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts." Cell, Vol. 89, No. 5, pp. 755-764. (1997)
(9) Curtis, A., Riehle M., "Tissue engineering: the biophysical background." Phys Med Biol, Vol. 46, No. 4, pp. R47-65. (2001)
(10) Ren, D., Yi H., Wang W., Ma X., "The enzymatic degradation and swelling properties of chitosan matrices with different degrees of N-acetylation." Carbohydr Res, Vol. 340, No. 15, pp. 2403-2410. (2005)
(11) Takahashi, Y., Tabata Y., "Effect of the fiber diameter and porosity of non-woven PET fabrics on the osteogenic differentiation of mesenchymal stem cells." J Biomater Sci Polym Ed, Vol. 15, No. 1, pp. 41-57. (2004)
(12) Augat, P., Rapp S., Claes L., "A modified hip screw incorporating injected cement for the fixation of osteoporotic trochanteric fractures." J Orthop Trauma, Vol. 16, No. 5, pp. 311-316. (2002)
(13) Zhang, Y., Deng X., Scheller E. L., et al., "The effects of Runx2 immobilization on poly (epsilon-caprolactone) on osteoblast differentiation of bone marrow stromal cells in vitro." Biomaterials, Vol. 31, No. 12, pp. 3231-3236. (2010)
(14) Yoneno, K., Ohno S., Tanimoto K., et al., "Multidifferentiation potential of mesenchymal stem cells in three-dimensional collagen gel cultures." J Biomed Mater Res A, Vol. 75, No. 3, pp. 733-741. (2005)
(15) Zhao, F., Grayson W. L., Ma T., Bunnell B., Lu W. W., "Effects of hydroxyapatite in 3-D chitosan-gelatin polymer network on human mesenchymal stem cell construct development." Biomaterials, Vol. 27, No. 9, pp. 1859-1867. (2006)
(16) Wang, G., Yang H., Li M., Lu S., Chen X., Cai X., "The use of silk fibroin/hydroxyapatite composite co-cultured with rabbit bone-marrow stromal cells in the healing of a segmental bone defect." J Bone Joint Surg Br, Vol. 92, No. 2, pp. 320-325. (2010)
(17) Venkatesan, J., Kim S. K., "Chitosan Composites for Bone Tissue Engineering¡XAn Overview." Marine drugs, Vol. 8, No. 8, pp. 2252-2266. (2010)
(18) 江晃榮, 林玉媛. 生物技術的健康結晶-甲殼質的療效: 世茂出版社.
(19) Shi, C., Zhu Y., Ran X., Wang M., Su Y., Cheng T., "Therapeutic potential of chitosan and its derivatives in regenerative medicine." J Surg Res, Vol. 133, No. 2, pp. 185-192. (2006)
(20) Muzzarelli, R. A., Mattioli-Belmonte M., Tietz C., et al., "Stimulatory effect on bone formation exerted by a modified chitosan." Biomaterials, Vol. 15, No. 13, pp. 1075-1081. (1994)
(21) Jia, Z., shen D., Xu W., "Synthesis and antibacterial activities of quaternary ammonium salt of chitosan." Carbohydr Res, Vol. 333, No. 1, pp. 1-6. (2001)
(22) Senel, S., McClure S. J., "Potential applications of chitosan in veterinary medicine." Adv Drug Deliv Rev, Vol. 56, No. 10, pp. 1467-1480. (2004)
(23) Pangburn, S. H., Trescony P. V., Heller J., "Lysozyme degradation of partially deacetylated chitin, its films and hydrogels." Biomaterials, Vol. 3, No. 2, pp. 105-108. (1982)
(24) Mao, J. S., Cui Y. L., Wang X. H., et al., "A preliminary study on chitosan and gelatin polyelectrolyte complex cytocompatibility by cell cycle and apoptosis analysis." Biomaterials, Vol. 25, No. 18, pp. 3973-3981. (2004)
(25) Madihally, S. V., Matthew H. W., "Porous chitosan scaffolds for tissue engineering." Biomaterials, Vol. 20, No. 12, pp. 1133-1142. (1999)
(26) Di Martino, A., Sittinger M., Risbud M. V., "Chitosan: a versatile biopolymer for orthopaedic tissue-engineering." Biomaterials, Vol. 26, No. 30, pp. 5983-5990. (2005)
(27) Rinaudo, M., Domard A., "Solution properties of chitosan." Skjak-Braek G, Anthonsen T, Sandford P Chitin and chitosan London: Elsevier Applied Science, Vol., No., pp. 71-86. (1989)
(28) Zhang, Y., Zhang M., "Three-dimensional macroporous calcium phosphate bioceramics with nested chitosan sponges for load-bearing bone implants." J Biomed Mater Res, Vol. 61, No. 1, pp. 1-8. (2002)
(29) Lee, Y. M., Park Y. J., Lee S. J., et al., "The bone regenerative effect of platelet-derived growth factor-BB delivered with a chitosan/tricalcium phosphate sponge carrier." J Periodontol, Vol. 71, No. 3, pp. 418-424. (2000)
(30) Yamaguchi, I., Tokuchi K., Fukuzaki H., et al., "Preparation and microstructure analysis of chitosan/hydroxyapatite nanocomposites." J Biomed Mater Res, Vol. 55, No. 1, pp. 20-27. (2001)
(31) Kong, L., Gao Y., Cao W., Gong Y., Zhao N., Zhang X., "Preparation and characterization of nano-hydroxyapatite/chitosan composite scaffolds." J Biomed Mater Res A, Vol. 75, No. 2, pp. 275-282. (2005)
(32) Teng, S. H., Lee E. J., Yoon B. H., Shin D. S., Kim H. E., Oh J. S., "Chitosan/nanohydroxyapatite composite membranes via dynamic filtration for guided bone regeneration." J Biomed Mater Res A, Vol. 88, No. 3, pp. 569-580. (2009)
(33) Zhang, Y., Venugopal J. R., El-Turki A., Ramakrishna S., Su B., Lim C. T., "Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering." Biomaterials, Vol. 29, No. 32, pp. 4314-4322. (2008)
(34) Moreau, J. L., Xu H. H., "Mesenchymal stem cell proliferation and differentiation on an injectable calcium phosphate-chitosan composite scaffold." Biomaterials, Vol. 30, No. 14, pp. 2675-2682. (2009)
(35) Ho, M. H., Wang D. M., Hsieh H. J., et al., "Preparation and characterization of RGD-immobilized chitosan scaffolds." Biomaterials, Vol. 26, No. 16, pp. 3197-3206. (2005)
(36) Park, Y. J., Kim K. H., Lee J. Y., et al., "Immobilization of bone morphogenetic protein-2 on a nanofibrous chitosan membrane for enhanced guided bone regeneration." Biotechnology and applied biochemistry, Vol. 43, No. Pt 1, pp. 17-24. (2006)
(37) Harrison, G., Shapiro I. M., Golub E. E., "The phosphatidylinositol-glycolipid anchor on alkaline phosphatase facilitates mineralization initiation in vitro." J Bone Miner Res, Vol. 10, No. 4, pp. 568-573. (1995)
(38) Banovac, K., Koren E., "Triiodothyronine stimulates the release of membrane-bound alkaline phosphatase in osteoblastic cells." Calcif Tissue Int, Vol. 67, No. 6, pp. 460-465. (2000)
(39) Mornet, E., Stura E., Lia-Baldini A. S., Stigbrand T., Menez A., Le Du M. H., "Structural evidence for a functional role of human tissue nonspecific alkaline phosphatase in bone mineralization." J Biol Chem, Vol. 276, No. 33, pp. 31171-31178. (2001)
(40) Narisawa, S., Hofmann M. C., Ziomek C. A., Millan J. L., "Embryonic alkaline phosphatase is expressed at M-phase in the spermatogenic lineage of the mouse." Development, Vol. 116, No. 1, pp. 159-165. (1992)
(41) Shamblott, M. J., Axelman J., Wang S., et al., "Derivation of pluripotent stem cells from cultured human primordial germ cells." Proc Natl Acad Sci U S A, Vol. 95, No. 23, pp. 13726-13731. (1998)
(42) Addison, W. N., Azari F., Sorensen E. S., Kaartinen M. T., McKee M. D., "Pyrophosphate inhibits mineralization of osteoblast cultures by binding to mineral, up-regulating osteopontin, and inhibiting alkaline phosphatase activity." J Biol Chem, Vol. 282, No. 21, pp. 15872-15883. (2007)
(43) Balcerzak, M., Hamade E., Zhang L., et al., "The roles of annexins and alkaline phosphatase in mineralization process." Acta Biochim Pol, Vol. 50, No. 4, pp. 1019-1038. (2003)
(44) Beck, G. R., Jr., Knecht N., "Osteopontin regulation by inorganic phosphate is ERK1/2-, protein kinase C-, and proteasome-dependent." J Biol Chem, Vol. 278, No. 43, pp. 41921-41929. (2003)
(45) Jono, S., Peinado C., Giachelli C. M., "Phosphorylation of osteopontin is required for inhibition of vascular smooth muscle cell calcification." J Biol Chem, Vol. 275, No. 26, pp. 20197-20203. (2000)
(46) Chang, Y. L., Stanford C. M., Keller J. C., "Calcium and phosphate supplementation promotes bone cell mineralization: implications for hydroxyapatite (HA)-enhanced bone formation." J Biomed Mater Res, Vol. 52, No. 2, pp. 270-278. (2000)
(47) Fujita, T., Meguro T., Izumo N., et al., "Phosphate stimulates differentiation and mineralization of the chondroprogenitor clone ATDC5." Jpn J Pharmacol, Vol. 85, No. 3, pp. 278-281. (2001)
(48) Orimo, H., Shimada T., "The role of tissue-nonspecific alkaline phosphatase in the phosphate-induced activation of alkaline phosphatase and mineralization in SaOS-2 human osteoblast-like cells." Mol Cell Biochem, Vol. 315, No. 1-2, pp. 51-60. (2008)
(49) Wennberg, C., Hessle L., Lundberg P., et al., "Functional characterization of osteoblasts and osteoclasts from alkaline phosphatase knockout mice." J Bone Miner Res, Vol. 15, No. 10, pp. 1879-1888. (2000)
(50) Osathanon, T., Giachelli C. M., Somerman M. J., "Immobilization of alkaline phosphatase on microporous nanofibrous fibrin scaffolds for bone tissue engineering." Biomaterials, Vol. 30, No. 27, pp. 4513-4521. (2009)
(51) Akintoye, S. O., Giavis P., Stefanik D., Levin L., Mante F. K., "Comparative osteogenesis of maxilla and iliac crest human bone marrow stromal cells attached to oxidized titanium: a pilot study." Clin Oral Implants Res, Vol. 19, No. 11, pp. 1197-1201. (2008)
(52) Nakayama, Y., Kato N., Nakajima Y., Shimizu E., Ogata Y., "Effect of TNF-alpha on human osteosarcoma cell line Saos2--TNF-alpha regulation of bone sialoprotein gene expression in Saos2 osteoblast-like cells." Cell Biol Int, Vol. 28, No. 10, pp. 653-660. (2004)
(53) Hoemann, C. D., El-Gabalawy H., McKee M. D., "In vitro osteogenesis assays: influence of the primary cell source on alkaline phosphatase activity and mineralization." Pathol Biol (Paris), Vol. 57, No. 4, pp. 318-323. (2009)
(54) Salgado, A. J., Coutinho O. P., Reis R. L., "Bone tissue engineering: state of the art and future trends." Macromol Biosci, Vol. 4, No. 8, pp. 743-765. (2004)
(55) Sendemir-Urkmez, A., Jamison R. D., "The addition of biphasic calcium phosphate to porous chitosan scaffolds enhances bone tissue development in vitro." J Biomed Mater Res A, Vol. 81, No. 3, pp. 624-633. (2007)
(56) Seol, Y. J., Lee J. Y., Park Y. J., et al., "Chitosan sponges as tissue engineering scaffolds for bone formation." Biotechnol Lett, Vol. 26, No. 13, pp. 1037-1041. (2004)
(57) VandeVord, P. J., Matthew H. W., DeSilva S. P., Mayton L., Wu B., Wooley P. H., "Evaluation of the biocompatibility of a chitosan scaffold in mice." J Biomed Mater Res, Vol. 59, No. 3, pp. 585-590. (2002)
(58) Gratzer, P. F., Pereira C. A., Lee J. M., "Solvent environment modulates effects of glutaraldehyde crosslinking on tissue-derived biomaterials." J Biomed Mater Res, Vol. 31, No. 4, pp. 533-543. (1996)
(59) Yagiela, J. A., Woodbury D. M., "Enzymatic isolation of osteoblasts from fetal rat calvaria." Anat Rec, Vol. 188, No. 3, pp. 287-306. (1977)
(60) Akman, A. C., Seda Tigli R., Gumusderelioglu M., Nohutcu R. M., "Bone morphogenetic protein-6-loaded chitosan scaffolds enhance the osteoblastic characteristics of MC3T3-E1 cells." Artif Organs, Vol. 34, No. 1, pp. 65-74. (2010)
(61) Riminucci, M., Bianco P., "Building bone tissue: matrices and scaffolds in physiology and biotechnology." Braz J Med Biol Res, Vol. 36, No. 8, pp. 1027-1036. (2003)

無法下載圖示 全文公開日期 2016/07/06 (校內網路)
全文公開日期 2031/07/06 (校外網路)
全文公開日期 2031/07/06 (國家圖書館:臺灣博碩士論文系統)
QR CODE