簡易檢索 / 詳目顯示

研究生: 卓震
Chen - Cho
論文名稱: 金屬板材引伸及再引伸成形製程之分析
A Study of Sheet Metal Drawing and Redrawing Processes
指導教授: 黃佑民
You-Min Huang
口試委員: 向四海
Su-Hai Hsiang
陳聰嘉
Tsung-Chia Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 104
中文關鍵詞: ULF退化殼元素有限元素法
外文關鍵詞: ULF, degenerated shell element, FEM
相關次數: 點閱:138下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文之研究目的,乃是運用本實驗室所發展的增量型彈塑性大變形三維有限元素計算程式,模擬金屬板材在軸對稱條件下,引伸及再引伸的成形製程。本文遵循Prandtl-Reuss塑流法則與von Mises之降伏條件,結合有限變形理論及updated Lagrangian formulation (ULF)之觀念建立一增量型彈塑性大變形三維有限元素分析程式。並利用以四邊形四節點之退化殼元素(degenerated shell element)所推導之形狀函數耦合入剛性矩陣,組成三維有限元素之分析模式,並且使用廣義rmin法則處理金屬板材在引伸及再引伸時,包含元素之降伏判斷、最大容許應變增量、最大容許旋轉增量、料片與模具間節點之接觸與分離判斷等問題。
藉由數值模擬,可以獲得引伸及再引伸過程中之全部變形歷程資料、沖頭負荷與位移關係、料片厚度分佈、應力與應變分佈等,並設計圓形及錐形兩組模具進行實驗,以驗證程式之可信度。本文模擬在圓柱沖頭的引伸及圓錐沖頭再引伸成形製程。最後並設計一系列的操作實驗,經由實驗數據與模擬分析之數據比較顯示其結果相當符合,此舉更加證明以本研究所發展之有限元素分析程式模擬錐形引伸加工製程之可行性,其分析之結果亦可提供製程分析者或模具設計者之參考。


The aim of this study is to apply an elasto-plastic incremental three-dimensional finite element computed code to simulate drawing and redrawing forming processes under axisymmetric condition. A methodology for formulating an elasto-plastic three-dimensional finite element model to simulate sheet metal forming process is developed using Prandtl-Reuss flow rule and von Mises yield criterion respectively in association with an updated Lagrangian formulation. The shape function derived from a four-node quadrilateral degenerated shell element was combined into the stiffness matrix to constitute the finite element model. An extended algorithm was proposed to formulate the boundary condition to solution drawing and redrawing forming process, such as nodal penetration and separation, strain increment and rotation increment, and altered elasto-plastic state of material.
Simulation results include the whole deformation history , the relationship between punch load and punch stroke , the distribution of thickness , stress and strain during the bending process were obtained. Two set of Circle-shaped tools and Cone-shaped tools was designed for experiments to verify the reliability of the program. The experimental results of Cone-shaped drawing process were compared with the simulation results. Both results after compensation were accurate and can be referred to process analyzers or tool designers.

摘要I ABSTRACTII 致謝III 目錄IV 圖表索引XII 第一章 緒論1 1.1前言1 1.2論文目的2 1.3 文獻回顧3 第二章 基本理論11 2.1基本假設11 2.2 有限變形之應變與應變率11 2.3 有限變形之應力與應力率15 2.4 有限變形之Updated Largrangian Formulation18 2.5 材料之彈塑性構成關係式23 第三章 有限元素分析32 3.1簡介32 3.2虛功原理的離散化35 3.3退化殼元素(Degenerated Shell Element)36 3.4 不同積分法則推導退化殼元素之剛性矩陣38 3.5 摩擦處理40 3.6廣義 法之增量步驟的計算44 3.7三維曲度修正方程式47 3.8除荷之設定48 3.9數值分析之流程48 第四章 實驗與數值分析55 4.1實驗與材料參數56 4.2 實驗原理與步驟58 4.3數值模擬分析60 4.4 模擬與實驗結果比較62 4.4.1 沖頭負荷與位移關係63 4.4.2 成形歷程64 4.4.3 應力分布65 4.4.4 厚度分佈65 4.5 本章之結語67 第五章 結論97 5.1 結論97 5.2 未來之展望99 參考文獻101 作者簡介104

1.Y. Yamada, N. Yoshimura and T. Sakurai, “Plastic Stress Strain Matrix and Its Application for the Solution of Elastic-Plastic Problems by Finite Element Method,” Int. J. Sci, Vol. 10, pp. 343-354 (1968).

2.H. D. Hibbit, P. V. Marcal and J. R. Rice, “A Finite Element Formulation for Problem of Large Strain and Large Displacement,” Int. J. Solids Struct., Vol. 6, pp. 1069-1086 (1970).

3.C. H. Lee and Kobayashi, “New Solutions to Rigid-Plastic Deformation Problems Using a Matrix Method,” Trans. ASME, Journal of Engineering for industry, Vol.95, pp. 865-873 (1973).

4.R. M. McMeeking and J. R. Rice, “Finite-Element Formulation for Problems of Large Elastic-Plastic Deformation,” Int. J. Solids Struct., Vol. 11, pp. 601-616 (1975).

5.T. J. R. Hughes, “Generalization of Selective Integration Procedures to Anisotropic and Nonlinear Media,” International Journal for Numerical Methods in Engineering, Vol. 15, pp. 1413-1418 (1980).

6.S. C. Tang, “Large elastic-plastic strain analysis of flanged hole forming” ,Comp.Struct.,Vol.13,pp. 363-370(1981).

7.T. Kumagai,H. Saiki and Y. Meng, “Hole flanging with ironing of two-plythicksheetmetals”,J.Mater.Pro.Tech.,Vol.89-90,pp.51-57(1999)

8.Y. Hayashi and M. Takagi, “Control of Side Wall Curl in Draw-Bending of High Strength Steel Sheets,” Proceeding of Advance Technology of Plasticity, Vol. 1, pp. 735-740 (1984).

9.A. Makinouchi, H. Ogawa and Y. Tozawa, “ Simulation of Sheet Bending Processes by Elastic-Plastic Finite Element Method, ” CIRP, Vol.38, pp. 279-282 (1989).

10.P.C Galbraith and J.O HGallquist, “ Shell-element formulation in LS-DYNA3D︰ their use in the modeling of sheet-metal forming, ”
Journal of Materials Processing Technology, Vol.50, pp. 158-167 (1995).

11. M. Kawka and A. Makinouchi, “ Shell-element formulation in the static explicit FEM code for the simulation of sheet stamping, ” Journal of Materials Processing Technology, Vol.50, pp. 105-115 (1995).

12. Y. M. Huang, Y. H. Lu and A. Makinouchi, “Elasto-Plastic Finite-Element Analysis of V-shape Sheet Bending, ” J. Mater. Process. Technol., Vol. 35, pp. 129-150 (1992).

13. M. H. Parsa, K. Yamaguchi, N. Takura, S. Imatani, “Consideration of the Re-drawing of Sheet Metal Based on Finite-Element Simulation, ”
Journal of Materials Processing Technology, Vol.47, pp. 87-101 (1994).

14. S. H. Kim, S. H. Kim and H. Huh, “Design Modification in a Multi-Stage Rectangular Cup Drawing Process with a Large Aspect Ratio by an Elasto-Plastic Finite Element Analysis, ” Journal of Materials Processing Technology, Vol.113, pp. 766-773 (2001).

15. H. Takuda, K. Mori, H. Fujimoto and N. Hatta, “Prediction of forming limit in bore-expanding of sheet metals using ductile fracture crition, ”Journal of Materials Processing Technology, Vol.92-93, pp.433-438 (1999).

16. D. K. Leu, T. C. Chen, and Y. M. Huang, “ Influence of punch shapes on the collar-drawing process of sheet steel, ” Journal of Materials Processing Technology, Vol.88, pp. 134-146 (1999).

17. J. C. Wang, P. Hu and Y. Q. Liu, “Numerical Study of the Flange Eaeeing of Deep-Drawing Sheets with Stronger Anisotropy, ” International Journal of Mechanical Sciences, Vol.43, pp. 279-296 (2001).

18. M. H. Parsa, K. Yamaguchi, N. Takakura, “Redrawing Analysis of Aluminum—Strainless-Steel Laminated Sheet Using FEM Simulations and Experiments, ” International Journal of Mechanical Science. Vol.43, pp. 2331-2347 (2001).

19. S. W. Lee and D. Y. Yang, “An Assessment of Numerical Parameters Influencing Springback in Explicit Finite Element Analysis of Sheet Metal Forming Process, ” J. of Material Processing Technology, Vol. 80-81, pp. 60-67 (1998).

20. J. R. Cho, S. J. Moon, Y. H. Moon, and S. S. Kang, “Finite Element Investigation on Spring-Back Characteristics in Sheet Metal U-Bending Process, ” J. of Material Processing Technology, Vol. 141, pp. 109-116 (2003).

21. Y. M. Huang and T. C. Chen, “Influence of Blank Profile on the V-Die Bending Camber Process of Sheet Metal,” Int. J. Adv. Manuf. Technol., Vol. 25, pp. 668-677 (2005).

22. L. C. Sousa, C. F. Castro and C. A. C. Antonio, “Optimal Design of V and U Bending Processes Using Genetic Algorithms,” J. of Material Processing Technology, Vol. 172, pp. 35-41 (2006).

QR CODE