簡易檢索 / 詳目顯示

研究生: 蔡柏宏
Bo-Hung Tsai
論文名稱: 雙頻高吸收寬頻抑制共模雜訊濾波器
Dual-band High Absorption and Broadband Suppression Common-Mode Noise Filter
指導教授: 林丁丙
Ding-Bing Lin
口試委員: 曾昭雄
Chao-Hsiung Tseng
吳宗霖
Tzong-Lin Wu
邱政男
Cheng-Nan Chiu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 76
中文關鍵詞: 吸收型共模抑制濾波器訊號完整性多層板印刷電路
外文關鍵詞: Absorptive-type Common-mode Suppression Filter, Signal Integrity, Multi-layer Printed Circuit Board
相關次數: 點閱:174下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要探討是否能透過共模穿透(Scc21)的諧振點與共模雜訊吸收頻率點設計於同一點,進而提升吸收型共模抑制濾波器的吸收率。為達到上述目的,我們需要設計反射型共模抑制濾波器的傳輸零點,並透過相位匹配技術及吸收端來調整吸收頻率點,藉由這兩項來完成高吸收率效果。
    使用反射型共模抑制濾波器架構為三層架構,是在蜿蜒差動傳輸線下方置入一E字型諧振器,透過諧振器與蜿蜒差動線之間的相互作用達到雙模態激發,並是當設計傳輸零點的位置移至所要吸收頻率,並同時達到寬頻抑制的特性。在頻域上,此濾波器於2GHz至10.3GHz共模皆抑制於-10dB以下,比例頻寬有135%。該濾波器整體尺寸為0.4λc×0.2λc,λc為其抑制頻帶中心頻率6GHz之波長,且於抑制頻率範圍內差模訊號階保持著良好的完整性。
    接著使用雙頻步階阻抗相位匹配與串聯式吸收端將完成的反射型共模抑制濾波器延伸為吸收型共模抑制濾波器,並根據通訊協定針對2.4GHz~2.5GHz與5.17GHz~5.33GHz雙頻段進行共模雜訊吸收。從頻域上,此濾波器的差模穿透從DC到12GHz階小於-3dB。共模抑制範圍從2GHz到10.9GHz皆抑制在-10dB以下,在2.4GHz~2.5GHz與5.17GHz~5.33GHz 的吸收效率分別為分別在97%與96%以上。
    綜合上述,此篇論文驗證確實可以利用抑制與吸收頻率點的重疊來提升共模雜訊的吸收率,同時也有著體積小、架構簡易與寬頻抑制等優點,對於實務有其應用價值。


    This paper mainly discusses whether the resonance point of common mode penetration (Scc21) can be designed at the same point as the common mode noise absorption frequency point, thereby improving the absorption rate of the absorption type common mode rejection filter. In order to achieve the above purpose, we need to design the transmission zero point of the reflection type common mode filter and adjust the absorption frequency point by the phase matching technology and the absorption port. It can complete the effect of high absorption rate by these two part.
    The reflective common-mode rejection filter architecture is a three-layer architecture. An E-shaped resonator is placed under the meandering differential transmission line, and dual-mode excitation in common mode is achieved through the interaction between the resonator and the meandering differential line. When the position of the design transmission zero is moved to the desired absorption frequency, and at the same time achieve the characteristics of broadband suppression. In the frequency domain, the common mode of this filter is suppressed below -10dB from 2 GHz to 10.3 GHz, and the proportional bandwidth is 135%. The overall size of the filter is 0.4λ_c×0.2λ_c, and λ_c is the wavelength of the center frequency of the suppression band of 6 GHz, and the differential mode signal stage maintains good integrity within the suppression frequency range.
    Then, the dual-frequency step impedance phase matching and series absorption end are used to extend the completed reflection-type common-mode suppression filter into an absorption-type common-mode suppression filter, and according to the communication protocol for 2.4GHz~2.5GHz and 5.17GHz~5.33GHz Dual-band common-mode noise absorption. From the frequency domain, the differential mode penetration of this filter is less than -3dB from DC to 12GHz. The common-mode suppression range is from 2GHz to 10.9GHz, and the suppression is below -15dB, and the absorption efficiency at 2.4GHz~2.5GHz and 5.17GHz~5.33GHz is above 97% and 96%, respectively.
    Based on the above, this paper verifies that the overlap of the suppression and absorption frequency points can indeed be used to improve the absorption rate of common mode noise. It also has the advantages of small size, simple architecture and broadband suppression, which have practical application value.

    摘要 i Abstract iii 誌謝 v 目錄 vi 圖目錄 viii 表目錄 xii 第一章 緒論 1 1.1研究動機與目的 1 1.2 文獻探討 4 1.3 論文架構 8 第二章 共模抑制濾波器設計基礎理論 10 2.1差動傳輸線簡介 10 2.2差動傳輸線 11 2.3奇、偶模分析 12 2.3.1奇模傳輸之特性分析 14 2.3.2偶模傳輸之特性分析 15 2.4 差動電路特性分析與量測 17 2.4.1混和模態散射參數 ( Mixed-Model S-parameter ) 17 第三章 反射型共模濾波器設計 23 3.1共模抑制濾波器設計目標及原型架構 24 3.1.1濾波器原型架構 24 3.1.2反射型濾波器架構之頻域模擬 26 3.2反射型共模抑制濾波器之差模分析 28 3.2.1 差動傳輸線阻抗設計 29 3.2.2蜿蜒差動線探討 30 3.3共模抑制濾波器之共模分析 31 3.3.1模態一之fratio1設計方法 33 3.3.2 f01、f02落點設計 35 3.3.3曲線交界處優化及設計流程統整 38 3.4濾波器之共模等效電路 40 3.5縮小化設計與時域模擬 42 第四章 高吸收率雙頻吸收型共模雜訊濾波器 47 4.1吸收型共模抑制濾波器概念 48 4.2 RCMF共模反射(Scc21)精簡模型設計 50 4.3雙頻相位匹配選擇 54 4.4吸收端設計 56 4.4.1並聯式吸收端 56 4.4.2 串聯式吸收端 58 4.5電路整合設計 60 4.5.1雙頻相位設計 60 4.5.2電路整合 61 4.6模擬結果 63 4.7實際量測結果 65 第五章 結論 70 參考文獻 72

    [1] Z. Chen, G. Katopis, “A comparison of performance potentials of single ended vs. differential signaling,” in Proc. 13th, Electrical Performance of Electronic Packaging Conf., 2004, pp.185-188.
    [2] D. G. Kam, H. Lee, J. Kim, J. Kim, “A new twisted differential line structure on high-speed printed circuit boards to enhance immunity to crosstalk and external noise,” IEEE Letters, Microwave and Wireless Components, vol 13, pp. 411-413, Sept. 2003.
    [3] E. Bogatin, Signal Integrity – Simplified, N.J.: Pretice Hall, 2004.
    [4] http://en.wikipedia.org/wiki/Differential_signaling
    [5] P. E. Fornberg, M. Kanda, P. M. Melinda, and H. H. Stephen, “The impact of a nonideal return path on differential signal integrity,” IEEE Trans. Electromagn. Compat., vol. 44, pp. 671-676, Feb. 2002.
    [6] N. Orhanovic, R. Raghuram, N. Matsui, “Signal propagation and radiation of single and differential microstrip traces over split image planes,” in Proc. International symposium on Electromagnetic compatibility, pp. 339-343, vol.1, 2000.
    [7] B. Archambeault, S. Connor, and J. Diepenbrock, “EMI emissions from mismatch in high-speed differential signal trace and cables,” in Proc. IEEE Int. Symp. Trans. Electromagn. Compat., Hawaii, July 2007, pp. 1-6.
    [8] C. R. Paul, Introduction to Electromagnetic Compatibility, New York: Wiley, 1992.
    [9] M. Damnjanovic , L. Zivanov , G. Stojanovic, “Common Mode Chokes for EMI Suppression in Telecommunication Systems,” IEEE EUROCON 2007 - The International Conference on "Computer as a Tool", September,2007.
    [10] G. H. Shiue, W. D. Guo, C. M. Lin, and R. B. Wu, “Noise reduction using compensation capacitance for bend discontinuities of differential transmission lines,” IEEE Trans. Adv. Packag., vol. 29, Aug. 2006, pp. 560–569.
    [11] C. H. Chang, R. Y. Fang, and C. L. Wang, “Bended Differential Transmission Line Using Compensation Inductance for Common-Mode Noise Suppression,” IEEE Trans. components, packaging and manufacturing technology, vol. 2, no. 9, Sep. 2012, pp. 1518–1525.
    [12] B. R. Huang, C. H. Chang, R. Y. Fang, C. L. Wang, “Common-Mode Noise Reduction Using Asymmetric Coupled Line With SMD Capacitor,” IEEE Trans. components, packaging and manufacturing technology, vol. 4, June 2014, pp. 1082 - 1089.
    [13] G. H. Shiue, W. D. Guo, C. M. Lin, and R.-B. Wu, “Noise reduction using compensation capacitance for bend discontinuities of differential transmission lines,” IEEE Trans. Advanced Packaging, vol. 29, pp. 560-569, August 2006.
    [14] W. T. Liu, C. H. Tsai, T. W. Han, and T. L. Wu, “An embedded common-mode suppression filter for G-Hz differential signals using periodic defected ground plane,” IEEE Microwave and wireless components letters, vol. 18, no. 4, April 2008.
    [15] F. Paulis, L. Raimondo, S. Connor, B. Archambeault, A. Orlandi,” Compact configuration for common mode filter design based on planar electromagnetic bandgap structures,” IEEE transactions on electromagnetic compatibility, vol. 54, no. 3, June 2012.
    [16] S. J. Wu, C. H. Tsai, and T. L. Wu, “A novel wideband common-mode suppression filter for GHz differential signals using coupled patterned ground structure,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 4, pp.848–855, Apr. 2009.
    [17] C. Y. Hsiao, C. H. Tsai, C. N. Chiu, and T. L. Wu, “Radiation suppression for cable-attached packages utilizing a compact embedded common-mode filter,” IEEE Trans. Compon., Packag., Manuf. Technol., vol. 2, no. 10, pp. 1696–1703, Oct. 2012.
    [18] G. H. Shiue, C. M. Hsu, C. L. Yeh, and C. F. Hsu ,“A Comprehensive Investigation of a Common-Mode Filter for Gigahertz Differential Signals Using Quarter-Wavelength Resonators,” IEEE Trans. Compon., Packag , Manuf. Technol., vol. 4, no. 1, January. 2014.
    [19] J. Naqui, Armando Fernandez-Prieto, Miguel Duran-Sindreu, F. Mesa, J. Martel, F. Medina, and F. Martin, “Common-mode suppression in microstrip differential lines by means of complementary split ring resonators: theory and applications,” IEEE Transactions on Microwave Theory and Techniques, vol. 60, no.10, October 2012.
    [20] C. H. Hung, C. Y. Hsiao, and T. L. Wu, “A novel common-mode filter (CMF) design based on signal interference technique,” Department of Electronic Engineering and Graduate Institute of Communication Engineering, NTU, Taipei, 10617, Taiwan
    [21] T. W. Wengs, C. H. Tsai, C. H. Chen, D. H. Han, and T. L. Wu, ”Synthesis Model and Design of a Common-Mode Bandstop Filter (CM-BSF) With an All-Pass Characteristic for High-Speed Differential Signals,” IEEE Trans. component, packaging and manufacturing technology, vol. 62, no 8, August 2014
    [22] P. J. Li, C. H. Cgeng, Y. C. Tseng, and T. L. Wu, “Novel Absorptive Design of Common-Mode Filter at Desired Frequency Band,” Department of Electrical Engineering and Graduate Institute of Communication Engineering, NTU, Taipei 10617, Taiwan
    [23] P. J. Li, Y. C. Tseng, C. H. Cheng and T. L. Wu, “A Novel Absorptive Common-Mode Filter for Cable Radiation Reduce,” IEEE Trans. component, packaging and manufacturing technology, vol. 7, no 4, April 2017
    [24] C. F. Chen, T. M. Shen and T. Y. Huang, ”Design of Multimode Net-Type Resonators and Their Applications to Filters and Multiplexers,” IEEE Rransactions on microwave theory and techniques, vol.59, no 4, April 2011.
    [25] A. S. Liu, T. Y. Huang and R. B. Wu, “A Dual Wideband Filter Design Using Fequency Mapping and Stepped-Impedance Resonator,” IEEE Rransactions on microwave theory and techniques, vol.56, no 12, December 2008.
    [26] C. F. Chen, T. Y. Huang and R. B. Wu, “Design of Dual- and Triple-Passband Filters Using Alternately Cascaded Multiband Resonators” IEEE Rransactions on microwave theory and techniques, vol.54, no 9, September 2006.
    [27] J. Liu, X. Y. Zhang and C. L. Yang, “Analysis and Design of Dual-Band Rectifier Using Novel Matching Network,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol 65 , issue 4 , April 2018.
    [28] S. H. Hall, G. W. Hall, and J. A. McCall, High-Speed Digital System Design, A Handbook of Interconnect Theory and Design Practices, Hoboken, NJ: Wiley, 2000.
    [29] S. B. Cohn, “Slotline on a dielectric substrate,” IEEE Trans. Microw. Theory Tech., vol. 17, no. 10, pp. 768-778, Oct. 1969.
    [30] Y. Chen and S. Yang, “Mixed mode S-parameters analysis for differential networks in integrated circuits, ” in Proc. the 16th IPFA IEEE Int. Symp., pp. 268-273, July 2009.
    [31] J. S. Hong, and M. J. Lancaster, Microstrip Filters for RF/Microwave Application, John Wiley & Sons, Inc., 2001.

    無法下載圖示 全文公開日期 2025/08/19 (校內網路)
    全文公開日期 2025/08/19 (校外網路)
    全文公開日期 2025/08/19 (國家圖書館:臺灣博碩士論文系統)
    QR CODE