簡易檢索 / 詳目顯示

研究生: 劉政欣
Cheng-hsin Liu
論文名稱: 新式注入鎖定除頻器與三倍頻器之設計
Design of Novel Injection-Locked Frequency Dividers and Injection-Locked Frequency Triplers
指導教授: 張勝良
Sheng-Lyang Jang
口試委員: 黃進芳
Jhin-Fang Huang
徐敬文
Ching-Wen, Hsue
黃忠偉
Jong-Woei, Whang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 100
中文關鍵詞: 注入鎖定除頻器倍頻器
外文關鍵詞: ILFT
相關次數: 點閱:148下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

此論文提出了二個注入鎖定除頻器和一個三倍頻器,它們分別使用了標準台積電0.18微米和0.13微米CMOS製程去實現。
第三章提出一個採用0.18um CMOS製程製作的低電壓寬頻帶注入鎖定除頻器,此注入鎖定除頻器是使用一個差動LC電壓控制振盪器和一個注入MOSFET來耦合輸入訊號到共振腔,低電壓寬頻帶注入鎖定除頻器的工作原理為放大注入鎖定除頻器的閘極訊號擺幅以達到低電壓寬頻帶的設計。從量測結果得知,此電路可工作在0.67 V的工作電壓,可調整自由振盪頻率範圍為3.91 GHz到4.22 GHz,消耗功率為1.87 mW。在注入訊號功率為0 dBm時,當注入頻率從15.3 GHz到17.3 GHz,除四的操作頻率範圍為2 GHz (12.3%);當注入頻率從4.1 GHz到9.2 GHz,除二的鎖頻範圍為5.1 GHz (77%)。
第四章提出一個採用0.13um CMOS製程製作的寬頻帶注入鎖定除頻器,此注入鎖定除頻器是使用一個差動電壓控制振盪器和兩個注入MOSFET串連一個並連LC共振腔來耦合輸入訊號到共振腔。從量測結果得知,此電路可工作在1.2 V的工作電壓,可調整自由振盪頻率範圍為4.885 GHz到5.455 GHz。在注入訊號功率為0 dBm時,當注入頻率從4.8 GHz到11.3 GHz,注入鎖定除頻器的鎖頻範圍為6.5 GHz;當注入頻率從4 GHz到11.3 GHz,注入鎖定除頻器的操作頻率範圍為7.3 GHz。此切換式LC共振腔有兩個阻抗峰值,高頻阻抗峰值和上面所述的高頻操作範圍有關,第二個低頻阻抗峰值和低頻段較小的鎖定範圍有關。
第五章提出一個採用0.13um CMOS製程製作的注入鎖定三倍頻器,並探討其電路設計、動作原理、量測結果。此差動輸入/出注入鎖定三倍頻器利用一次諧波注入鎖定振盪器疊接一個由N型MOSFET交叉耦合電壓控制振盪器所組成的三次諧波產生器。此電路可工作在0.75 V的工作電壓,注入鎖定振盪器的自由振盪頻率範圍為8.1 GHz到10.9 GHz。在注入訊號功率為0 dBm時,全鎖定範圍為當注入頻率從2.9 GHz到3.42 GHz。


This thesis presents two injection locked frequency dividers and one injection locked frequency tripler, which are implemented by using standard TSMC 0.18um and 0.13um CMOS process respectively.
Chapter 3 presents a low-voltage wide locking range injection-locked frequency divider (ILFD) using a standard 0.18 μm CMOS process. The ILFD is based on a differential LC VCO with one injection MOSFET for coupling external signal to the resonator. The low voltage operation and wide locking range is obtained by boosting the gate voltage swing of the ILFD. Measurement results show that at the supply voltage of 0.67 V, the divider’s free-running frequency is tunable from 3.91 to 4.22 GHz, and the core power consumption is 1.87mW. At the incident power of 0 dBm the divide-by-4 operation range is about 2 GHz (12.3 %), from the incident frequency 15.3 to 17.3 GHz. The divide-by-2 locking range is about 5.1 GHz (77 %), from the incident frequency 4.1 to 9.2 GHz.
Chapter 4 presents a new wide locking range injection-locked frequency divider (ILFD) using a standard 0.13μm CMOS process. The ILFD is based on a differential VCO with two injection MOSFETs in series with a parallel LC tank for coupling external signal to the resonator. Measurement results show that at the supply voltage of 1.2 V, the divider’s free-running frequency is tunable from 4.885 to 5.455 GHz, and at the incident power of 0 dBm the locking range is 6.5 GHz, from the incident frequency 4.8 to 11.3 GHz. The operation range is 7.3 GHz, from 4 to 11.3 GHz. The switched LC tank has two impedance peaks, the high-frequency peak impedance is associated with a high-frequency operation range mentioned above, and the second low-frequency peak impedance is associated with a smaller locking range in the low-frequency band.
Chapter 5 presents a CMOS LC-tank injection locked frequency tripler (ILFT) fabricated in 0.13μm CMOS process and describes the circuit design, operation principle and measurement results of the ILFT. The differential input/output ILFT circuit is realized with a first-harmonic injection-locked oscillator (ILO) cascade the n-core cross-coupling voltage-controlled oscillator used as a third-harmonic generator. At the supply voltage of 0.75 V, the free-running frequency of the ILO is from 8.1 to 10.9 GHz. At the incident power of 0 dBm, the total locking range is from the incident frequency 2.9 to 3.42 GHz.

中文摘要 1 Abstract 3 誌謝 5 Contents 6 List of Figures 8 List of Tables 11 Chapter 1 Introduction 12 1.1 Background 12 1.2 Thesis Outline 15 Chapter 2 Overview of Oscillators 16 2.1 The Oscillator Theory 17 2.1.1 Negative Resistance (NR) 17 2.1.2 Positive Feedback (PFB) 20 2.2 All Types of Oscillators 22 2.2.1 Ring Oscillator 22 2.2.2 LC-Tank Oscillator 25 2.3 Voltage-Controlled Oscillator 29 2.4 The parameters of VCOs 30 2.4.1 Center Frequency 30 2.4.2 Tuning Range 30 2.4.3 Tuning Linearity 31 2.4.4 Output Amplitude 32 2.4.5 Power Dissipation 33 2.4.6 Supply and Common-Mode Rejection 33 2.4.7 Output Signal Purity 33 2.5 Phase Noise 34 2.5.1 Definition of Phase Noise 34 2.5.2 Existing Models of Phase Noise 36 2.5.2.1 Time-Invariant Phase Noise Model 37 2.5.2.2 The Lesson Model 37 2.5.3 Noise Sources 39 2.5.3.1 Thermal Noise 39 2.5.3.2 Flicker Noise 42 2.5.4 Phase Noise in Wireless Communication 43 2.5.5 Previous Models of Phase Noise 46 2.6 On-Chip Inductor Research 47 2.6.1 Inductor Categories 47 2.6.2 Loss Mechanisms of Inductor 49 2.6.2.1 Metal Loss 49 2.6.2.2 Substrate Loss 50 2.6.2.3 Definitions of Inductor Parameters 51 2.7 Varactor 52 2.7.1 P-N Junction Varactor 53 2.7.2 MOS Varactor 53 2.7.2.1 Accumulation-Mode MOS Varactor 55 2.7.2.2 Inversion-Mode MOS Varactor 57 2.8 Injection Locking Frequency Divider 58 2.8.1 Principle Of Injection Locked Frequency Divider 59 2.8.1 Locking Range 61 2.8.2 Switch ILFD 63 Chapter 3 A Low Voltage, Low Power Divide-by-4 LC-tank Injection- Locked Frequency Divider 65 3.1 Introduction 65 3.2 Circuit Design 66 3.3 Measurement Results 68 Chapter 4 A Wide-Locking Range Injection-Locked Frequency Divider Using Switched LC Tank 74 4.1 Introduction 74 4.2 Circuit Design 75 4.3 Measurement Results 78 Chapter 5 Injection-Locked Frequency Tripler in 0.13μm CMOS Technology 85 5.1 Introduction 85 5.2 Circuit Design 86 5.3 Measurement Results 87 Chapter 6 Conclusion 95 Reference 97

[1] B. Razavi, RF microelectronics, Prentice Hall PTR, 1998.
[2] B. Razavi, Design of analog CMOS integrated circuits, McGraw-Hill, 2001.
[3] J. Craninckx and M. S. J. Steyaert, “A 1.75-GHz/3-V dual-modulus divide-by-128/ 129 prescaler in 0.7 um CMOS,” IEEE J. Solid-State Circuits, vol. 31, pp. 890-897, July 1996.
[4] Q. Huang and R. Rogenmoser, “Speed optimization of edge-triggered CMOS circuits for gigahertz single-phase clocks,” IEEE J. Solid-State Circuits, vol. 31, pp. 456-463, Mar. 1996.
[5] J. Lee and B. Razavi, “A 40 GHz frequency divider in 0.18-um CMOS technology,” IEEE J. Solid-State Circuits, vol. 39, pp. 594-601, Apr. 2004.
[6] H. R. Rategh, and T.H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, pp. 813-821, June 1999.
[7] H. D. Wohlmuth and D. Kehrer, “A high sensitivity static 2:1 frequency divider up to 27 GHz in 120 nm CMOS,” IEEE European Solid State Circuits Conference (ESSCIRC), pp. 823-826, Sept. 2002.
[8] M. Tiebout, “A 480 uW 2 GHz ultra low power dual-modulus prescaler in 0.25 um standard CMOS,” IEEE International Symposium on Circuit and System (ISCAS), vol. 5, pp. 741-744, May 2000.
[9] H. Wu, and A. Hajimiri, “A 19 GHz 0.5 mW 0.35 μm CMOS frequency divider with shunt-peaking locking-range enhancement,” IEEE ISSCC Dig. Tech. Papers, pp. 412-413, Feb. 2001.
[10] R. J. Betancourt-Zamora, S. Verma, and T. H. Lee, “1 GHz and 2.8 GHz CMOS injection- locked ring oscillator prescalers,” IEEE Symposium on VLSI Circuits, pp. 47-50, June 2001.
[11] P. Kinget, R. Melville, D. Long, and V. Gopinathan, “An Injection Locking Scheme for Precision Quadrature Generation,” IEEE J. Solid-State Circuits, vol. 37, pp. 845-851, July 2002.
[12] W. Z. Chen, and C. L. Kuo, “18 GHz and 7 GHz superharmonic injection-locked dividers in 0.25pm CMOS technology,” IEEE European Solid State Circuits Conference (ESSCIRC), pp. 89-92, Sept. 2002.
[13] H. Wu, “Signal generation and processing in high-frequency/high-speed silicon- based integrated circuits,” PhD thesis, California Institute of Technology, 2003.
[14] R. Adler, “A study of locking phenomena in oscillators,” Proc. IEEE, vol. 61, pp.1380-1385, Oct. 1973.
[15] K. Yamamoto and M. Fujishima, “70 GHz CMOS harmonic injection-locked divider,” in IEEE Int. Solid-State Circuits Conf. Dig., Feb. 2006, pp. 600–601.
[16] S.-L. Jang, J.-C. Luo, C.-W. Chang, C.-F. Lee and J.-F. Huang, ” LC-tank Colpitts injection-locked frequency divider with even and odd modulo,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 2, pp. 113-115, Feb. 2009.
[17] S.-H. Lee, S.-L. Jang, and Y.-H. Chung, “A low voltage divide-by-4 injection locked frequency divider with quadrature outputs,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 5, pp. 373–375, May 2007
[18] M.-C. Chuang, J.-J. Kuo, C.-H. Wang, and H. Wang, “A 50 GHz divide-by-4 injection lock frequency divider using matching method,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 5, pp. 344–346, May 2008.
[19] M. Tiebout, “A CMOS direct injection-locked oscillator topology as high-frequency low-power frequency divider,” IEEE J. Solid-State Circuits, vol. 39, no. 7, pp. 1170–1174, Jul. 2004.
[20] Y.- H. Cho, S.- C. Hong and Y.- S. Kwon, “A novel active inductor and its application to inductance-controlled oscillator,” IEEE Trans. Microwave Theory Tech., vol. 45, no. 8, pp. 1208–1213, Aug. 1997.
[21] S.-L. Jang, S.-S. Huang, J.-F. Lee and M.-H. Juang, “LC-tank Colpitts injection-locked frequency divider with record locking range,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 8, pp. 560–562, Aug. 2008.
[22] H. Wu and A. Hajimiri, “A 19 GHz 0.5 mW 0.35 μm CMOS frequency divider with shunt-peaking locking-range enhancement,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2001, pp. 412–413.
[23] Y.-H. Chuang, S.-H. Lee, R.-H. Yen, S.-L. Jang, J.-F. Lee and M.-H. Juang, “A wide locking range and low voltage CMOS direct injection-locked frequency divider,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 5, pp. 299–301, May 2006.
[24] M.-C. Chen and C.-Y. Wu, “Design and analysis of CMOS subharmonic injection-locked frequency triplers,” IEEE Trans. Microw. Theory Tech., vol.56, no. 8, pp. 1869–1878, Aug. 2008.
[25] Y. Zheng and C. E. Saavedra, “A bipolar MMIC frequency tripler,” IEEE Int. Carib. Conf. Devices, Circuits, and Systems, Cancun, Mexico, Apr. 2008.
[26] B. R. Jackson, F. Mazzilli, and C. E. Saavedra, “A frequency tripler using a subharmonic mixer and fundamental cancellation, ” IEEE Trans. Microwave Theory and Tech., vol. 57, no. 5, pp. 1083–1090, May 2009.
[27] L. Zhang, D. Karasiewicz, B. Cifctioglu, and H. Wu, “A 1.6-to-3.2/4.8 GHz dual-modulus injection-locked frequency multiplier in 0.18μm digital CMOS,” IEEE Radio-Frequency Integrated Circuits (RFIC) Symp, Jun. 2008, pp.427–430.
[28] K. Yamamoto, “A 1.8-V operation 5-GHz-band CMOS frequency doubler using current-reuse circuit design technique,” IEEE J. Solid State Circuits, vol. 40, no. 6, pp. 1288–1295, Jun. 2005.
[29] S.-W. Tam, E. Socher, A. Wong, Y. Wang, L. D. Vu, and M.-C. F. Chang, “Simultaneous sub-harmonic injection-locked mm-wave frequency generators for multi-band communications in CMOS,” IEEE Radio Frequency Integrated Cir., Jun. 2008, pp. 131–134.
[30] W. L. Chan, J. R. Long, and J. J. Pekarik, “A 56-to-65 GHz injectionlocked frequency tripler with quadrature outputs in 90 nm CMOS,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2008, pp. 480–629.
[31] M. Tiebout, “A CMOS direct injection-locked oscillator topology as high-frequency low-power frequency divider,” IEEE J. Solid-State Circuits, vol. 39, no. 7, pp. 1170–1174, July 2004.
[32] Y.-H. Chuang, S.-H. Lee, R.-H. Yen, S.-L. Jang, J.-F. Lee and M.-H. Juang, “A wide locking range and low voltage CMOS direct injection-locked frequency divider,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 5, pp. 299–301, May 2006.
[33] S.-L. Jang, L.-Y. Tsai and C.-F. Lee, ” A CMOS switched resonator frequency divider tuned by the switch gate bias ,” Microwave and Optical Technology Lett.,Vol. 50, no. 1, pp.222-225, Jan. 2008.
[34] H. Wu and A. Hajimiri, “A 19 GHz 0.5 mW 0.35 μm CMOS frequency divider with shunt-peaking locking-range enhancement,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2001, pp. 412–413.
[35] S.-L. Jang, S.-S. Huang, J.-F. Lee and M.-H. Juang, “LC-tank Colpitts injection-locked frequency divider with record locking range,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 8, pp. 560–562, Aug. 2008.

無法下載圖示 全文公開日期 2014/07/29 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE