簡易檢索 / 詳目顯示

研究生: 潘香樺
Hsiang-Hua Pan
論文名稱: 結合區塊特徵和混合式回歸之深度學習年齡估測
A Deep Learning Framework with Region Features and Hybrid Regression for Age Estimation
指導教授: 徐繼聖
Gee-Sern Hsu
口試委員: 周碩彥
Shuo-Yan Chou
鍾聖倫
Sheng-Luen Chung
鄭文皇
Wen-Huang Cheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 83
中文關鍵詞: 深度學習年齡估測
外文關鍵詞: deep learning, age estimation
相關次數: 點閱:333下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文提出混合不同人臉區塊的年齡估測架構並結合移動分類視窗和軟邊界回歸進行人臉年齡估測。我們比較了多個人臉辨識網路在年齡估測的效能,並以混合架構結合不同人臉區塊的深度學習特徵,提出移動式分類視窗以決定邊界年齡,再以軟邊界回歸以提升年齡估測的準確度。我們將提出的方法測試在評估實際年齡的資料庫Morph,和評估外表年齡的LAP及Adience資料庫上,均達到優於大多近期方法的結果。


    We propose the Region-based Hybrid Framework (RHF) with moving segmentation and soft-boundary regression for age estimation. The RHF is an ensemble of VGG networks, and each VGG net considers a specific facial region as input. The VGG is selected from a comparison of pretrained facial models originally designed for face recognition, but trained again for age estimation by transfer learning. To improve the accuracy of RHF, we implement two schemes, the moving segmentation and soft boundary regression. The moving segmentation better determines the boundary ages good to segment the age. The soft boundary regression can rectify the age estimate that is falsely classified by the moving segmentation. The proposed approach is validated by experiments on MORPH, LAP and Adience, and compared to the state-of-the-art methods to demonstrate its efficacy.

    目錄 摘要 II Abstract III 誌謝 IV 目錄 V 圖目錄 VIII 表目錄 X 第一章 介紹 1 1.1 研究背景和動機 1 1.2 方法概述 2 1.3 論文貢獻 3 1.4 論文架構 4 第二章 文獻回顧 5 2.1 人臉區塊相關文獻 5 2.2 特徵擷取相關文獻 8 2.2.1 仿生特徵(Biologically Inspired Features) 8 2.2.2 深度學習特徵(Deeply Learned Features) 12 2.3 分層式年齡估測的相關文獻 17 2.4 網路架構的相關文獻 20 2.4.1 VGG 20 2.4.2 GoogleNet 22 2.4.3 ResNet 24 2.5 預訓練模型的相關文獻 26 2.6 回歸式樹狀模型(Regressive Tree Structured Model) 32 第三章 主要方法 34 3.1 合成架構的介紹 34 3.2 移動式分類視窗 36 3.3 軟邊界回歸 39 第四章 實驗設置與分析 41 4.1 標準資料庫介紹 41 4.1.1 MORPH介紹 41 4.1.2 Adience介紹 42 4.1.3 LAP介紹 43 4.2 實驗樣本設置與前處理 44 4.3 實驗結果與分析 45 4.3.1 預訓練模型的比較 45 4.3.2 人臉區塊 48 4.3.3 合成架構 51 4.3.4 移動式分類和軟邊界回歸 53 第五章 結論與未來研究方向 60 第六章 參考文獻 61 附錄 卷積神經網路(Convolutional Neural Network, CNN) 66 A Feedforward Pass前向傳導 66 B Backpropagation Pass 反向傳播 67 C Convolution Layer 68 D Pooling Layer 68 E Activation Function 69 F Dropout Layer 69

    第六章 參考文獻
    [1] Mu, G., Guo, G., Fu, Y., & Huang, T. S. (2009, June). Human age estimation using bio-inspired features. In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on (pp. 112-119). IEEE.
    [2] K. Luu, K. Seshadri, M. Savvides, T. Bui, and C. Suen. Contourlet appearance model for facial age estimation. In IJCB, Oct 2011.
    [3] S. Kohli, S. Prakash, and P. Gupta. Hierarchical age estimation with dissimilarity-based classification. Neurocomputing, 120:164–176, 2013.
    [4] A. Lanitis, C. Draganova, and C. Christodoulou. Comparing different classifiers for automatic age estimation. IEEE, 34(1):621–628, Feb 2004.
    [5] P. Thukral, K. Mitra, and R. Chellappa. A hierarchical approach for human age estimation. In ICASSP,IEEE, pages 1529–1532, 2012.
    [6] A. Lanitis, C. Draganova, and C. Christodoulou. Comparing different classifiers for automatic age estimation. IEEE, 34(1):621–628, Feb 2004.
    [7] G. Guo, G. Mu, Y. Fu, C. Dyer, and T. Huang. A study on automatic age estimation using a large database. In IEEE, pages 1986–1991, Sept 2009.
    [8] F. Gao and H. Ai. Face age classification on consumer images with gabor feature and fuzzy lda method. LNCS, pages 132–141. 2009.
    [9] G. Guo and X. Wang. A study on human age estimation under facial expression changes. In IEEE,CVPR, pages 2547– 2553, 2012.
    [10] Parkhi, O. M., Vedaldi, A., & Zisserman, A. (2015, September). Deep Face Recognition. In BMVC (Vol. 1, No. 3, p. 6).
    [11] Jison Hsu, G. S., Cheng, Y. T., Ching Ng, C., & Hoon Yap, M. (2017). Component Biologically Inspired Features With Moving Segmentation for Age Estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (pp. 38-45).
    [12] Gao, B. B., Xing, C., Xie, C. W., Wu, J., & Geng, X. (2017). Deep Label Distribution Learning With Label Ambiguity. IEEE Transactions on Image Processing, 26(6), 2825-2838.
    [13] Rothe, R., Timofte, R., & Van Gool, L. (2015). Dex: Deep expectation of apparent age from a single image. In Proceedings of the IEEE International Conference on Computer Vision Workshops (pp. 10-15).
    [14] Liu, X., Li, S., Kan, M., Zhang, J., Wu, S., Liu, W., ... & Chen, X. (2015). Agenet: Deeply learned regressor and classifier for robust apparent age estimation. In Proceedings of the IEEE International Conference on Computer Vision Workshops (pp. 16-24).
    [15] Zhu, Y., Li, Y., Mu, G., & Guo, G. (2015). A study on apparent age estimation. In Proceedings of the IEEE International Conference on Computer Vision Workshops (pp. 25-31).
    [16] Yang, X., Gao, B. B., Xing, C., Huo, Z. W., Wei, X. S., Zhou, Y., ... & Geng, X. (2015). Deep label distribution learning for apparent age estimation. In Proceedings of the IEEE International Conference on Computer Vision Workshops (pp. 102-108).
    [17] Ranjan, R., Zhou, S., Cheng Chen, J., Kumar, A., Alavi, A., Patel, V. M., & Chellappa, R. (2015). Unconstrained age estimation with deep convolutional neural networks. In Proceedings of the IEEE International Conference on Computer Vision Workshops (pp. 109-117).
    [18] Eidinger, E., Enbar, R., & Hassner, T. (2014). Age and gender estimation of unfiltered faces. IEEE Transactions on Information Forensics and Security, 9(12), 2170-2179.
    [19] Levi, G., & Hassner, T. (2015). Age and gender classification using convolutional neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (pp. 34-42).
    [20] Ozbulak, G., Aytar, Y., & Ekenel, H. K. (2016, September). How Transferable Are CNN-Based Features for Age and Gender Classification?. In Biometrics Special Interest Group (BIOSIG), 2016 International Conference of the (pp. 1-6). IEEE.
    [21] Liu, H., Lu, J., Feng, J., & Zhou, J. (2018). Label-sensitive deep metric learning for facial age estimation. IEEE Transactions on Information Forensics and Security, 13(2), 292-305.
    [22] Duan, M., Li, K., & Li, K. (2018). An Ensemble CNN2ELM for Age Estimation. IEEE Transactions on Information Forensics and Security, 13(3), 758-772.
    [23] Chen, S., Zhang, C., Dong, M., Le, J., & Rao, M. (2017, July). Using ranking-cnn for age estimation. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
    [24] Tan, Z., Wan, J., Lei, Z., Zhi, R., Guo, G., & Li, S. Z. (2017). Efficient Group-n Encoding and Decoding for Facial Age Estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence.
    [25] Liu, H., Lu, J., Feng, J., & Zhou, J. (2017, May). Ordinal Deep Feature Learning for Facial Age Estimation. In Automatic Face & Gesture Recognition (FG 2017), 2017 12th IEEE International Conference on (pp. 157-164). IEEE.
    [26] Agustsson, E., Timofte, R., & Van Gool, L. (2017, October). Anchored regression networks applied to age estimation and super resolution. In 2017 IEEE International Conference on Computer Vision (ICCV) (pp. 1652-1661). IEEE.
    [27] Chen, S., Zhang, C., & Dong, M. (2017). Deep Age Estimation: From Classification to Ranking. IEEE Transactions on Multimedia.
    [28] Liu, H., Lu, J., Feng, J., & Zhou, J. (2018). Label-sensitive deep metric learning for facial age estimation. IEEE Transactions on Information Forensics and Security, 13(2), 292-305.
    [29] Duan, M., Li, K., & Li, K. (2018). An Ensemble CNN2ELM for Age Estimation. IEEE Transactions on Information Forensics and Security, 13(3), 758-772.
    [30] Chen, S., Zhang, C., Dong, M., Le, J., & Rao, M. (2017, July). Using ranking-cnn for age estimation. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
    [31] Tan, Z., Wan, J., Lei, Z., Zhi, R., Guo, G., & Li, S. Z. (2017). Efficient Group-n Encoding and Decoding for Facial Age Estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence.
    [32] Liu, H., Lu, J., Feng, J., & Zhou, J. (2017, May). Ordinal Deep Feature Learning for Facial Age Estimation. In Automatic Face & Gesture Recognition (FG 2017), 2017 12th IEEE International Conference on (pp. 157-164). IEEE.
    [33] Agustsson, E., Timofte, R., & Van Gool, L. (2017, October). Anchored regression networks applied to age estimation and super resolution. In 2017 IEEE International Conference on Computer Vision (ICCV) (pp. 1652-1661). IEEE.
    [34] Chen, S., Zhang, C., & Dong, M. (2017). Deep Age Estimation: From Classification to Ranking. IEEE Transactions on Multimedia.
    [35] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems (pp. 1097-1105).
    [36] Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. R. (2012). Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580.
    [37] Chen, J. C., Kumar, A., Ranjan, R., Patel, V. M., Alavi, A., & Chellappa, R. (2016, September). A cascaded convolutional neural network for age estimation of unconstrained faces. In Biometrics Theory, Applications and Systems (BTAS), 2016 IEEE 8th International Conference on (pp. 1-8). IEEE.
    [38] Niu, Z., Zhou, M., Wang, L., Gao, X., & Hua, G. (2016). Ordinal regression with multiple output cnn for age estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 4920-4928).
    [39] Escalera, S., Fabian, J., Pardo, P., Baró, X., Gonzalez, J., Escalante, H. J., ... & Guyon, I. (2015). Chalearn looking at people 2015: Apparent age and cultural event recognition datasets and results. In Proceedings of the IEEE International Conference on Computer Vision Workshops (pp. 1-9).
    [40] K. Ricanek and T. Tesafaye, “MORPH: A Longitudinal Image Database of Normal Adult Age-Progression,” Proc. IEEE Int’l Conf. Automatic Face and Gesture Recognition, pp. 341-345, 2-6 April 2006.
    [41] K. Ricanek and T. Tesafaye, “MORPH: A Longitudinal Image Database of Normal Adult Age-Progression,” Proc. IEEE Int’l Conf. Automatic Face and Gesture Recognition, pp. 341-345, 2-6 April 2006.
    [42] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ... & Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1-9).
    [43] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).
    [44] Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.
    [45] Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., ... & Darrell, T. (2014, November). Caffe: Convolutional architecture for fast feature embedding. In Proceedings of the ACM International Conference on Multimedia (pp. 675-678). ACM.
    [46] Masi, I., Trần, A. T., Hassner, T., Leksut, J. T., & Medioni, G. (2016, October). Do we really need to collect millions of faces for effective face recognition?. In European Conference on Computer Vision (pp. 579-596). Springer International Publishing.
    [47] K. He, J. Sun, Convolutional neural networks at constrained time cost, in: CVPR, 2015, pp. 5353-5360.
    [48] Hsu, G. S., Chang, K. H., & Huang, S. C. (2015). Regressive Tree Structured Model for Facial Landmark Localization. In Proceedings of the IEEE International Conference on Computer Vision (pp. 3855-3861).
    [49] X. Zhu, D. Ramanan. "Face detection, pose estimation and landmark localization in the wild",Computer Vision and Pattern Recognition (CVPR) Providence, Rhode Island, June 2012.
    [50] H. Rowley, S. Baluja, and T. Kanade. Neural network-based face detection. Pattern Analysis and Machine Intelligence, IEEE Trans., 20(1):23–38, 1998.
    [51] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan.”Object detection with discriminatively trained partbased models.” IEEE TPAMI, 2009.
    [52] Sun, Y., Wang, X., & Tang, X. (2014). Deep learning face representation from predicting 10,000 classes. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 1891-1898).
    [53] D. Chen, X. D. Cao, L. W. Wang, F. Wen, and J. Sun. Bayesian face revisited: A joint formulation. In European Conference on Computer Vision, pages 566–579. 2012.
    [54] Sun, Y., Chen, Y., Wang, X., & Tang, X. (2014). Deep learning face representation by joint identification-verification. In Advances in Neural Information Processing Systems (pp. 1988-1996).
    [55] Xiong, X., & Torre, F. (2013). Supervised descent method and its applications to face alignment. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 532-539).
    [56] Zhang, T. (2011). Adaptive forward-backward greedy algorithm for learning sparse representations. Information Theory, IEEE Transactions on, 57(7), 4689-4708.
    [57] Sun, Y., Wang, X., & Tang, X. (2015). Deeply learned face representations are sparse, selective, and robust. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 2892-2900).
    [58] Kumar, N., Berg, A. C., Belhumeur, P. N., & Nayar, S. K. (2009, September). Attribute and simile classifiers for face verification. In Computer Vision, 2009 IEEE 12th International Conference on (pp. 365-372). IEEE.
    [59] Bourdev, L., Maji, S., & Malik, J. (2011, November). Describing people: A poselet-based approach to attribute classification. In Computer Vision (ICCV), 2011 IEEE International Conference on (pp. 1543-1550). IEEE.
    [60] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems (pp. 1097-1105).
    [61] P. Viola and M. Jones, ``Rapid object detection using a boosted cascade of simple features,'' in IEEE Proc. Int. Conf. Computer Vision and Pattern Recognition, vol. 1, p. 511–518, 2001.
    [62] M. Riesenhuber and T. Poggio, “Hierarchical Models of Object Recognition in Cortex,” Nature Neuroscience, vol. 2, no. 11, pp. 1019-1025, 1999.
    [63] T. Serre, L. Wolf, S. Bileschi, M. Riesenhuber, and T. Poggio, “Robust Object Recognition with Cortex-Like Mechanisms,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 29, no. 3, pp. 411-426, Mar. 2007.

    QR CODE