簡易檢索 / 詳目顯示

研究生: 陳漢威
Han-Wei Chen
論文名稱: 合金元素與表面硬化處理對鐵鉻碳合金機械性質之影響
The effect of alloy element and surface hardening on the mechanical properties of Fe-Cr-C alloys
指導教授: 林舜天
Shun-Tian Lin
口試委員: 吳翼貽
Ye-Ee Wu
林寬泓
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 91
中文關鍵詞: 粉末冶金氣體滲硫氮化氣體滲碳真空淬火
外文關鍵詞: Powder Metallurgy, Gas Sulphonitriding, Gas Carburizing, Vacuum Quenching
相關次數: 點閱:238下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究的目的是利用粉末冶金的技術來得到高密度的零件,藉此提升產品在市場上的競爭力,原料使用不同配比的還原羰基鐵粉(CIP)與鐵鉻母合金粉(420MA),比較各種成分得到的材料性質,首先將兩種粉末球磨混合後,接著做造粒,再將造粒後之粉末做單軸模壓成形,再以1270℃~1330℃之溫度區間做真空燒結,最後再對燒結完成之試片進行真空淬火、氣體滲碳與氣體滲硫氮化等熱處理。
實驗結果顯示,對各種不同成分試片進行氣體滲硫氮化熱處理均能有效改善表面硬度,但對於氣體滲碳熱處理而言,只對碳含量(0.19%)與鉻含量(14.9%)比例最低的試片有表面硬化的效果,是由於鉻含量太高則無法藉由氣體滲碳的方式來達到表面硬化之效果。
根據極化腐蝕試驗的之結果,發現經真空淬火後之試片,隨者鉻含量上升,試片之耐蝕性也隨之增加。


The purpose of this research is to use the powder metallurgy (PM) process to get high density parts, in order to increase the competitiveness of products in the market. Various compositions were compared, using different ratios of reduced carbonyl Iron powder (CIP) to 420 master alloy powder (420MA), which were first mixed and then granulated. The powder granules were uni-axially die-pressed, then sintered in vacuum at temperatures ranging from 1270℃ to 1330℃. Sintered specimens were then heat-treated by three different approaches, including vacuum quenching, gas carburizing and gas sulphonitriding.
The results show that gas sulphonitriding heat treatment is effective in improving the surface hardness for all specimens, but gas carburizing is only effective for the specimens of lowest proportion Carbon (0.19%) and Chromium (14.9%) content. It was found that gas carburizing would lose its effect of surface hardening if chromium content be too high.
According to corrosion test, it was found that vacuum quenching and increased chromium content increase the corrosion resistance.

摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 XI 第一章 前言 1 第二章 研究背景與文獻回顧 3 2-1 預合金粉與混合粉末 3 2-2 低碳高鉻不銹鋼 5 2-3 表面硬化處理 6 2-3-1 表面硬化法 6 2-3-2 滲碳法 8 2-3-3 滲碳用鋼 8 2-3-4 氣體滲碳法 9 2-3-5 氮化處理 11 2-3-6 氮化用鋼 14 2-3-7 氣體氮化法 15 2-3-8 氣體滲硫氮化 16 2-4 碳與鉻元素的影響 17 2-4-1 碳含量對機械性質的影響 17 2-4-2 鉻含量對機械性質的影響 21 2-5 腐蝕機構 24 第三章 實驗方法與步驟 26 3-1 實驗流程 26 3-2 基礎粉末 28 3-3 球磨造粒 31 3-4 乾壓成型 32 3-5 真空燒結 33 3-6 燒結密度 34 3-7 燒結體硬度 34 3-8 金相製備 35 3-9 元素均質化分析 35 3-10 熱處理流程 36 3-10-1 真空淬火 38 3-10-2 氣體滲碳 39 3-10-3 氣體滲硫氮化 40 3-11 機械性質分析 41 3-11-1 拉伸強度試驗 41 3-11-2 微硬度試驗 42 3-12 極化腐蝕試驗 43 3-13 測試儀器 44 第四章 結果與討論 45 4-1 燒結體性質分析 45 4-1-1 燒結密度與硬度分析 45 4-1-2 元素均質化分析 48 4-2 燒結金相觀察 53 4-3 熱處理機械性質性質之比較 62 4-3-1 真空淬火之金相觀察 63 4-3-2 拉伸性質 66 4-3-3 拉伸破斷面分析 69 4-3-4 微硬度試驗 77 4-3-5 硬化層剖面組織觀察 81 4-3-6 極化腐蝕試驗 84 第五章 結論 88 第六章 參考文獻 89

[1] K. M. Kulkarni, “A study of MIM Feedstocks Made with Powders of Different Particle Size”, Advanced in Powder Metallurgy, MPIF, Princeton, NJ, 1990, Vol. 3, pp. 330-340.
[2] P. A. Davies, G. R. Dunstan, A. C. Hayward and R. I. L. Howells, “Development of Master Alloy Powders Including Nickel-Based Superalloys, For Metal Injection Moulding(MIM)”, PM TEC Proceedings, 2003, Las Vegas.
[3] P. A. Davies, G.R. Dunstan, D.F. Heaney and T. J. Mueller, “Comparison of Master Alloy and Pre-Alloyed 316L Stainless Steel Powders for Metal Injection Moulding(MIM)”, PM2TEC 2004 World Congress, MPIF, Chicago, IL.
[4] A. J. Coleman, K. Murray, M.A. Kearns, T.A. Tingskog, B. Sanford and E. Gonzalez, “Effect of Particle Size Distribution on Processing and Properties of Metal Injection Moulded 4140 and 4340”, PowderMet 2011, San Francisco, CA.
[5] A. J. Coleman, K. Murray, M. Kearns, T.A. Tingskog, B. Stanford and E. Gonzalez, “Properties of MIM AISI 420 via Pre-alloyed and Master Alloy Routes”, PowderMet 2011, San Francisco, CA.
[6] G. P. Cavallaro, T. P. Wilks, C. Subramanian, K. N. Strafford, P. French, J. E. Allison, “Bending fatigue and contact fatigue characteristics of carburized gears”, Surface and Coatings Technology, Vol. 71, 1995, pp. 182-192.
[7] T. P. Wilks, G. P. Cavallaro, C. Subramanian, K. N. Strafford, P. French and J. E. Allison. “Condition prevailing in the carburizing process and their effect on the fatigue properties of carburized gears”, Journal of Materials Processing Technology, Vol.40, 1994, pp. 111-125.
[8] K. E. Thelning, “Steel and its Heat Treatment”, second edition, 1984, pp.42-46.
[9] M. Akita and K. Tokaji, “Effect of carburizing on notch fatigue behaviour in AISI 316 austennitic stainless steel”, Surface and Coating Technology, Vol. 200, 2006, pp.6073-6078.
[10] M. Izciler and M. Tabur, ”Abrasive wear behavior of different case depth gas carburized AISI 8620 gear steel”, Wear, Vol. 260, 2006, pp. 90-98.
[11] O. Asi, A. Cetin Can, J. Pineault, M. Belassel, “The effect of high temperature gas carburization on bending fatigue strength of SAE 8620 steel”, Materials and Design, Vol. 30, 2009, pp. 1792-1797.
[12] Y. Cao, F. Ernst and G. M. Michal, “Colossal carbon supersaturation in austenitic stainless steels carburized at low temperature”, Acta Materialia, Vol. 51, 2003, pp. 4171-4181.
[13] 黃振賢,金屬熱處理,18版,新文京圖書,第158頁。
[14] 黃振賢,金屬熱處理,18版,新文京圖書,第159頁。
[15] 機械工程手冊8,熱處理與表面處理-精密製造,五南圖書出版公司,2002,第7-140頁。
[16] M. Tsujikawa, D. Yoshida, N. Yamauchi, N. Ueda, T. Sone and S. Tanaka, “Surface material design of 316 stainless steel by combination of low temperature carburizing and nitriding”, Surface & Coatings Technology, Vol. 200, 2005, pp. 507 - 511.
[17] R. Subbiah, P. Karthick, R. IIavarasan, T. Prasanth, R. Manjunath and R. Rajavel, “Effect of Nitrogen on Low Temperature Nitrided Stainless Steels for Steam Turbine Blades”, IJRTE, Vol. 3, 2014, ISSN: 2277-3878.
[18] H. Aydin and A. Bayram, "Effect of different nitriding processes on the friction coefficient of 304 austenitic and 420 martensitic stainless steels", Industrial Lubrication and Tribology, Vol. 65, 2013, pp. 27-36.
[19] Z. Has, J. Gramsz and W. Jarosz, “Gas Sulphonitriding”, Wear, Vol. 64, 1980, pp. 333-338.
[20] 機械工程手冊8,熱處理與表面處理-精密製造,五南圖書出版公司,2002,第7-116頁。
[21] H. Miura, T.H. Lim and R.M. Germen, “Mechanical Properties of Injection Molded 4600 Steels”, J. of the Japan Society of Powder and Powder Metallurgy, 1992, Vol. 39, pp. 254-259.
[22] H. Mirua, K. Urakami, S. Ando and T. Honda, “Metal Injection Molding of Prealloyed 4600 Fine Powder”, J. of the Japan Society of Powder and Powder Metallurgy, 1993, Vol. 40, pp. 388-392.
[23] R. E. Reed-Hill, Physical Metallurgy Principle. 3rd Edition, 1994, pp. 590.
[24] B. Hu, A. Klekovkin, D. Milligan and U. L. F. Engstrom, “Properties of High Density Cr-Mo Pre-alloyed Materials High Temperature Sintered”, Advances in Powder Metallurgy and Particulate Material, compiled by W. B. James and R. A. Chernenkoff, MPIF, Princeton, NJ, 2004, part. 7, 2004, pp.28-40.
[25] J. Charles, J.D. Mithieux, P.O. Santacreu and L. Peguer, “The Ferritic Stainless Steel Family: The Appropriate Answer To Nickel Volatility”, Rev Metall, Vol. 106, 2009, pp. 124-139.
[26] T. Tsuchiyama, J. Tobata, T. Tao, N. Nakada and S. Takaki, “Quenching and partitioning treatment of a low-carbon martensitic stainless steel”, Materials Science and Engineering, 2012, pp. 585-592.
[27] C. C. Lin and Y. Lin, “Microstructure and Mechanical Properties of 0.63C-12.7Cr Martensitic Stainless Steel”, Chung Hua Journal of Science and Engineering, Vol. 7, 2009, pp. 41-46.
[28] D. Pecker and I.M. Bernstein, “Handbook of Stainless Steels”, 1977, pp.6-4, 6-5.
[29] T. B. Massalski and H. Okamoto in, “Binary Alloy Phase Diagrams, 2nd Edition, Vol.2”, edited By Massalski and H. Okamoto, ASM International, Material Park, Ohio, USA, 1990, pp. 1271-1773.
[30] 王仰舒,鋼鐵材料,全華科技圖書公司。

無法下載圖示 全文公開日期 2019/02/17 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE