簡易檢索 / 詳目顯示

研究生: 葉靖謙
Jing-Cian Ye
論文名稱: 碳氮化硼與超奈米鑽石複合結構在碳布上之超級電容特性分析
The studies of Boron Carbon Nitride and Ultra-nanocrystalline Diamond on Carbon Cloth for Supercapacitor Properties
指導教授: 黃柏仁
Bohr-Ran Huang
口試委員: 黃柏仁
周賢鎧
張守進
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 319
中文關鍵詞: 碳布超奈米鑽石碳氮化硼超級電容器循環穩定性
外文關鍵詞: Carbon cloth, Ultra-nanocrystalline diamond, Boron Carbon Nitride, Supercapacitor, Cycle stability
相關次數: 點閱:471下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究探討了超奈米鑽石和碳氮化硼複合於碳布上作為超級電容器之應用,並探討退火之後處理對此結構之影響。內文將分為兩個部分,第一部分致力於透過各種不同製程及組成原料做出被視作結構類似於石墨半導體材料的碳氮化硼(Boron Carbon Nitride, BCN)於碳布上之結構影響,並探討不同製程及組成原料對碳氮化硼於碳布上之作為超級電容器之特性,以及探討不同生長時間之超奈米鑽石(Ultra-nanocrystalline diamond, UNCD)於碳布上之均勻性與密度。第二部分旨在致力於探討碳氮化硼複合超奈米鑽石於碳布作為超級電容器之特性,並研究不同結構及不同退火條件對此種新型複合結構之影響,藉此提升超級電容器之電容值。
研究發現,以硼酸(Boric acid)、葡萄糖(glucose) 、氰胺 (Cyanamide)為原材料,並使用化學氣相沉積系統 (Chemical vapor deposition, CVD) 直接成長碳氮化硼於碳布基板上,其作為超級電容器之重量比電容值為最佳――推測是其ID / IG比值在此系列參數中具有最小值,因此得知此參數所成長碳氮化硼於碳布基板上結晶品質為最佳。
此外,研究亦發現BCN / UNCD / CC複合結構在經過退火之後處理其重量比電容值會大幅增加,並且其循環穩定性也會因此有所提升。值得一提的是,經過大氣退火後處理之樣品,其重量比電容值從原先之118.95F/g上升至121.45 F/g,循環穩定性為102.1%,有著令人驚豔的良好循環穩定性,甚至整體有著上升之趨勢。表明此種BCN / UNCD / CC新型複合結構在經過大氣退火後具有優異之循環穩定性。


This study investigates the application of Ultra-nanocrystalline diamond (UNCD) and boron carbon nitride (BCN) composites on carbon cloth for supercapacitor usage, as well as the impact of post-annealing treatment on this structure. The content is divided into two parts.The first part focuses on fabricating BCN structures on carbon cloth using various processes and composition materials, resembling a semiconductor-like material similar to graphite. The study explores the influence of different fabrication processes and composition materials on the supercapacitor properties of BCN on carbon cloth. Additionally, it investigates the uniformity and density of ultra-nanocrystalline diamond (UNCD) grown on carbon cloth with different growth times.The second part aims to examine the characteristics of BCN composite with ultra-nanocrystalline diamond on carbon cloth as a supercapacitor. It also investigates the effects of different structures and annealing conditions on this novel composite structure to enhance the capacitance of the supercapacitor.

The research findings indicate that growing BCN directly on the carbon cloth substrate using boric acid, glucose, and cyanamide as source materials through chemical vapor deposition (CVD) yields the best specific capacitance for supercapacitor applications. This is likely due to the minimum ID/IG ratio in this parameter series, indicating optimal crystalline quality of BCN grown on the carbon cloth substrate.

Furthermore, the study reveals that the specific capacitance of BCN/UNCD/CC composite structures significantly increases after annealing treatment, leading to improved cyclic stability. Notably, the specific capacitance of the samples subjected to atmospheric annealing treatment increases from the original 118.95 F/g to 121.45 F/g, with a cyclic stability of 102.1%. This demonstrates remarkable cyclic stability improvement after atmospheric annealing treatment for the BCN/UNCD/CC composite structure, even showing an overall upward .In conclusion, this novel BCN/UNCD/CC composite structure exhibits excellent cyclic stability after atmospheric annealing treatment, making it a promising candidate for enhancing supercapacitor performance.

目錄 中文摘要 II Abstract III 致謝 IV 目錄 IV 圖目錄 IX 表目錄 XXV 第一章 緒論 1.1 前言 1 1.2 研究動機 3 第二章 文獻探討 2.1 鑽石材料之特性簡介 5 2.1.1碳系材料概述 5 2.1.2結晶鑽石之尺寸分類 6 2.1.3超奈米鑽石成長機制 8 2.2 碳氮化硼( Boron Carbon Nitride , BCN )材料之特性 9 2.2.1碳氮化硼概述 9 2.2.2碳氮化硼之型態與結構 10 2.3 超級電容器之種類與機制 12 2.3.1超級電容器(Supercapacitor, SC)概述 12 2.3.2電雙層電容(Electrical Double Layer Capacitor, EDLC) 14 2.3.3贗電容(Pseudocapacitor, PC) 16 2.3.4混合電容(Hybrid Capacitor, HC) 18 第三章 實驗方法 3.1 實驗設計與流程 19 3.1.1實驗設計 19 3.1.2碳氮化硼複合碳布結構(BCN/CC) 實驗流程圖 22 3.1.3超奈米鑽石複合碳布結構(UNCD/CC)實驗流程圖 27 3.1.4超奈米鑽石/碳氮化硼/碳布複合結構(UNCD/BCN/CC)、碳氮化硼/超奈米鑽石/碳布複合結構(BCN / UNCD/CC) 實驗流程圖 28 3.2 製備之材料介紹 32 3.3 碳布基材之清洗 33 3.4 碳布基材之前處理 34 3.4.1硝酸前處理 34 3.4.2碳氮化硼複合碳布結構(BCN/CC) 實驗流程圖 34 3.5 微波電漿化學氣相沉積法成長碳氮化硼 35 3.6 熱化學氣相沉積法成長碳氮化硼 37 3.6.1熱化學氣相沉積法成長BCNT(bup) 37 3.6.2熱化學氣相沉積法成長BCNT(bgc) 38 3.7 微波電漿輔助化學氣相沉積法成長超奈米鑽石 39 3.8 管式高溫爐之後處理 40 3.8.1氮氣(N2)退火後處理 40 3.8.2大氣(Atmosphere)退火後處理 42 3.9 儀器設備與材料分析方法 43 3.9.1場發射掃描式電子顯微鏡(Scanning Electron Microscope, FE-SEM) 43 3.9.2拉曼光譜儀(Raman Spectrum) 43 3.9.3 X射線繞射儀(X-ray Diffraction, XRD) 44 3.9.4電化學分析儀(Electrochemical Workstation) 45 3.9.5 X光電子能譜儀 (X-ray photfoelectron spectroscopy, XPS) 45 第四章 碳氮化硼與奈米鑽石於碳布上之超級電容特性分析 4.1六方氮化硼混合鑽石粉末(h-BN+Diamond)佐以微波電漿氣相沉積形成BCNM(hu)之特性分析 46 4.1.1 BCNM(hu)/CC表面型態分析 46 4.1.2 BCNM(hu)/CC拉曼光譜儀分析 50 4.1.3 BCNM(hu)/CC X-ray繞射儀分析 55 4.1.4 BCNM(hu)/CC循環伏安法(Cyclic voltammetry, CV)分析 57 4.1.5 BCNM(hu)/CC恆電流充放電(Galvanostatic charge/discharge, GCD)分析 64 4.2硼酸、尿素混合聚乙二醇(boric acid+urea+polyethylene glycol)佐以低壓氣相沉積形成BCNT(bup)之特性分析 70 4.2.1 BCNT(bup)/CC表面型態分析 70 4.2.2 BCNT(bup)/CC拉曼光譜儀分析 79 4.2.3 BCNT(bup)/CC X-ray繞射儀分析 86 4.2.4 BCNT(bup)/CC循環伏安法(Cyclic voltammetry, CV)分析 87 4.2.5 BCNT(bup)/CC恆電流充放電(Galvanostatic charge/discharge, GCD)分析 99 4.3硼酸、葡萄糖混合氰胺(boric acid+glucose+cyanamide)佐以低壓氣相沉積形成BCNT(bgc)之特性分析 110 4.3.1 BCNT(bgc)/CC表面型態分析 110 4.3.2 BCNT(bgc)/CC拉曼光譜儀分析 118 4.3.3 BCNT(bgc)/CC X-ray繞射儀分析 125 4.3.4 BCNT(bgc)/CC循環伏安法(Cyclic voltammetry, CV)分析 126 4.3.5 BCNT(bgc)/CC恆電流充放電(Galvanostatic charge/discharge, GCD)分析 137 4.4 不同成長時間鑽石(UNCD/CC)之特性分析 146 4.4.1 UNCD/CC表面型態分析 146 4.4.2 UNCD /CC拉曼光譜儀分析 147 4.4.3 UNCD /CC X-ray繞射儀分析 149 4.4.4 UNCD /CC循環伏安法(Cyclic voltammetry, CV)分析 150 4.4.5 UNCD /CC恆電流充放電(Galvanostatic charge/discharge, GCD)分析 152 4.5 本章循環充放電之穩定性分析 153 4.6 碳氮化硼不同結構超級電容特性之比較 156 4.6.1 BCNM(hu)概述 156 4.6.2 BCNT(bup)概述 157 4.6.3 BCNT(bgc)概述 160 4.6.4 本章總結整理 162 第五章 碳氮化硼與超奈米鑽石複合結構在碳布上之超級電容特性分析 5.1 不同成長時間超奈米鑽石/碳氮化硼/碳布複合結構 (UNCD/BCNT(bgc)/CC)之特性分析 164 5.1.1 UNCD/ BCNT(bgc)/CC表面型態分析 164 5.1.2 UNCD/ BCNT(bgc)/CC拉曼光譜儀分析 170 5.1.3 UNCD/ BCNT(bgc)/CC X-ray繞射儀分析 175 5.1.4 UNCD/ BCNT(bgc)/CC循環伏安法(Cyclic voltammetry, CV)分析 176 5.1.5 UNCD/ BCNT(bgc)/CC恆電流充放電(Galvanostatic charge/discharge, GCD)分析 184 5.2 不同成長時間碳氮化硼/超奈米鑽石/碳布複合結構 (BCNT(bgc)/UNCD/CC)之特性分析 191 5.2.1 BCNT(bgc)/UNCD/CC表面型態分析 191 5.2.2 BCNT(bgc)/UNCD/CC拉曼光譜儀分析 197 5.2.3 BCNT(bgc)/UNCD/CC X-ray繞射儀分析 202 5.2.4 BCNT(bgc)/UNCD/CC X光電子能譜儀分析 203 5.2.5 BCNT(bgc)/UNCD/CC循環伏安法(Cyclic voltammetry, CV)分析 204 5.2.6 BCNT(bgc)/UNCD/CC恆電流充放電(Galvanostatic charge/discharge, GCD)分析 211 5.3 大氣退火處理碳氮化硼/超奈米鑽石/碳布複合結構 ([(BCNT(bgc)/UNCD)/CC]AA)之特性分析 218 5.3.1 [(BCNT(bgc)/UNCD)/CC]AA表面型態分析 218 5.3.2 [(BCNT(bgc)/UNCD)/CC]AA拉曼光譜儀分析 223 5.3.3 [(BCNT(bgc)/UNCD)/CC]AA X-ray繞射儀分析 227 5.3.4 [(BCNT(bgc)/UNCD)/CC]AA X光電子能譜儀分析 228 5.3.5 [(BCNT(bgc)/UNCD)/CC]AA循環伏安法(Cyclic voltammetry, CV)分析 229 5.3.6 [(BCNT(bgc)/UNCD)/CC]AA恆電流充放電(Galvanostatic charge/discharge, GCD)分析 235 5.4 氮氣退火處理碳氮化硼/超奈米鑽石/碳布複合結構 ([(BCNT(bgc)/UNCD)/CC]NA)之特性分析 241 5.4.1 [(BCNT(bgc)/UNCD)/CC]NA表面型態分析 241 5.4.2 [(BCNT(bgc)/UNCD)/CC]NA拉曼光譜儀分析 246 5.4.3 [(BCNT(bgc)/UNCD)/CC]NA X-ray繞射儀分析 250 5.4.4 [(BCNT(bgc)/UNCD)/CC]NA X光電子能譜儀分析 251 5.4.4 [(BCNT(bgc)/UNCD)/CC]NA循環伏安法(Cyclic voltammetry, CV)分析 252 5.4.5 [(BCNT(bgc)/UNCD)/CC]NA恆電流充放電(Galvanostatic charge/discharge, GCD)分析 258 5.5 本章循環充放電之穩定性分析 264 5.6 碳氮化硼與超奈米鑽石不同結構超級電容特性之比較 267 5.6.1 UNCD/ BCNT(bgc)/CC概述 267 5.6.2 BCNT(bgc)/UNCD/CC概述 269 5.6.3 [(BCNT(bgc)/UNCD)/CC]AA概述 271 5.6.4 [(BCNT(bgc)/UNCD)/CC]NA概述 272 5.6.5 本章總結整理 264 第六章 結論與未來展望 6.1 結論 276 6.2 未來展望 276 參考文獻 278

[1]. J.R. Miller, P. Simon, Electrochemical capacitors for energy management, Science, 321 (2008), 651-652.
https://doi.org/10.1126/science.1158736
[2]. https://www.eettaiwan.com/20210901nt31-looking-at-hybrid-supercapacitors/
[3]. Sharma, Swati , Chand, Prakash, Supercapacitor and electrochemical techniques: A brief review, Results in Chemistry 5 (2023) 100885
www.sciencedirect.com/journal/results-in-chemistry
[4]. S. Zhang, N. Pan, Supercapacitors performance evaluation, Adv. Energy Mater., 5 (2015), 1401401.
https://doi.org/10.1002/aenm.201401401
[5]. Sachin Kumar, Ghuzanfar Saeed, Ling Zhu, Kwun Nam Hui, Nam Hoon Kim, Joong Hee Lee, 0D to 3D carbon-based networks combined with pseudocapacitive electrode material for high energy density supercapacitor: A review, Chemical Engineering Journal, 403 (2021), 126352.
https://doi.org/10.1016/j.cej.2020.126352
[6]. M. Yu, Y. Lu, H. Zheng and X. Lu, New Insights into the Operating Voltage of Aqueous Supercapacitors, Chem.–Eur. J., 24 (2018), 3639-3649.
https://doi.org/10.1002/chem.201704420
[7]. Xiaoqing Liu, Wei Xu, Dezhou Zheng, Zhifeng Li, Yinxiang Zeng and Xihong Lu, Carbon cloth as an advanced electrode material for supercapacitors: progress and challenges, J. Mater. Chem. A, 8 (2020), 17938-17950.
https://doi.org/10.1039/D0TA03463K
[8]. V. Strauss, K. Marsh, M. D. Kowal, M. El-Kady and R. B. Kaner, A Simple Route to Porous Graphene from Carbon Nanodots for Supercapacitor Applications, Adv. Mater., 30 (2018), 1704449.
https://doi.org/10.1002/adma.201704449
[9]. R. K. L. Tan, S. P. Reeves, N. Hashemi, D. G. Thomas, E. Kavak, R. Montazami and N. N. Hashemi, Graphene as a flexible electrode: review of fabrication approaches, J. Mater. Chem. A, 5 (2017), 17777–17803.
https://doi.org/10.1039/C7TA05759H
[10]. Y. Horng, Y. Lu, Y. Hsu, C. Chen, L. Chen and K. Chen, Flexible supercapacitor based on polyaniline nanowires/carbon cloth with both high gravimetric and area-normalized capacitance, J. Power Sources, 195 (2010), 4418–4422.
https://doi.org/10.1016/j.jpowsour.2010.01.046
[11]. P. Du, Y. Dong, H. Kang, X. Yang, Q. Wang, J. Niu, S. Wang and P. Liu, Graphene-Wrapped Polyaniline Nanowire Array Modified Functionalized of Carbon Cloth for High-Performance Flexible Solid-State Supercapacitor, ACS Sustainable Chem. Eng., 6 (2018), 14723-14733.
https://doi.org/10.1021/acssuschemeng.8b03278
[12]. W. Wang, W. Liu, Y. Zeng, Y. Han, M. Yu, X. Lu and Y. Tong, A Novel Exfoliation Strategy to Significantly Boost the Energy Storage Capability of Commercial Carbon Cloth, Adv. Mater., 27 (2015), 3572–3578.
https://doi.org/10.1002/adma.201500707
[13]. R. B. Weisman, New Frontiers in Nanocarbons, Electrochem. Soc. Interface, 22 (2013), 49.
https://doi.org/10.1149/2.F02133if
[14]. R.L.McCreery,Advanced Carbon Electrode Materials for Molecular Electrochemistry, Chem. Rev., 108 (2008), 2646-2687.
https://doi.org/10.1021/cr068076m
[15]. S. Iijima, Helical microtubules of graphitic carbon, Nature, 354 (1991), 56-58.
https://doi.org/10.1038/354056a0
[16]. H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl and R. E. Smalley, C60: Buckminsterfullerene, Nature, 318 (1985), 162-163.
https://doi.org/10.1038/318162a0
[17]. Patrick T.Moseleya, David A.J.Rand, Understanding the functions of carbon in the negative active-mass of the lead–acid battery: A review of progress, Journal of Energy Storage, 19 (2018), 272-290.
https://www.sciencedirect.com/science/article/pii/S2352152X18303955
[18]. Nianjun Yang, Siyu Yu, Julie V. Macpherson, Yasuaki Einaga, Hongying Zhao, Guohua Zhao, Greg M. Swain and Xin Jiang, Conductive diamond: synthesis, properties, and electrochemical applications, Chem. Soc. Rev., 48 (2019), 157-204.
https://doi.org/10.1039/C7CS00757D
[19]. Seiichiro Matsumoto, Yoichiro Sato, Mutsukazu Kamo and Nobuo Setaka, Vapor deposition of diamond particles from methane, Japanese Journal of Applied Physics, 21 (1982), L183.
https://doi.org/10.1143/JJAP.21.L183
[20]. C. R. Lin, D. H. Wei, M. K. BenDao, W. E. Chen, T. Y. Liu, Development of High-Performance UV Detector Using Nanocrystalline Diamond Thin Film, International Journal of Photoenergy, 2014 (2014), 492152.
https://doi.org/10.1155/2014/492152
[21]. Arora, S. and V. Vankar, Field emission characteristics of microcrystalline diamond films: Effect of surface coverage and thickness, Thin Solid Films, 515(4) (2006), 1963-1969.
https://doi.org/10.1016/j.tsf.2006.08.002
[22]. S.J. Kim, B.K Jul, Y.H. Lee, B.S. Park, Emission characteristic of diamond-tip FEA fabricated by transfer mold technique, IEEE, 526 (1996), 526-529.
https://doi.org/10.1109/IVMC.1996.601879
[23]. O.A. Williams, M. Nesladek, M. Daenen, S. Michaelson, A. Hoffman, E. Osawa, K. Haenen, R.B. Jackman, Growth, electronic properties and applications of nanodiamond, Diamond and Related Materials, 17(7–10) (2008), 1080-1088.
https://doi.org/10.1016/j.diamond.2008.01.103
[24]. Butler, J.E. and Sumant, A.V., The CVD of Nanodiamond Materials, Chemical Vapor Deposition, 14 (2008), 145-160.
https://doi.org/10.1002/cvde.200700037
[25]. Rani, R., Kumar, N., Kozakov, A.T., Googlev, K.A. and Sankaran, K.J., Superlubrication Properties of Ultra-Nanocrystalline Diamond Film Sliding against a Zirconia Ball. RSC Advances, 5 (2015), 100663-100673.
https://doi.org/10.1039/C5RA18832F
[26]. J. Yang, and Y. Zhang, Nanocrystalline Diamond Films Grown by Microwave Plasma Chemical Vapor Deposition and Its Biocompatible Property, Advances in Materials Physics and Chemistry, 8 (2018), 157-176.
https://doi.org/10.4236/ampc.2018.84011
[27]. Fan Dong, Liwen Wu, Yanjuan Sun, Min Fu, Zhongbiao Wu and S. C. Lee, Efficient synthesis of polymeric gC3N4 layered materials as novel efficient visible light driven photocatalysts, Journal of Materials Chemistry, 21(39) (2011), 15171-15174.
https://doi.org/10.1039/C1JM12844B
[28]. Ikeda, T., Teii, K., Casiraghi, C., Robertson, J. and Ferrai, A.C., Effect of the sp2 Carbon Phase on n-Type Conduction in Nanodiamond Films, Journal of Applied Physics, 104 (2008), 073720.
https://doi.org/10.1063/1.2990061
[29]. Hu, Q., Joshi, R.K. and Kumar, A., Electrons Diffusion Study on the Nitrogen-Doped Nanocrystalline Diamond Film Grown by MPECVD Method, Applied Surface Science, 256 (2010), 6233-6236.
https://doi.org/10.1016/j.apsusc.2010.03.147
[30]. Shraddha Dhanraj Nehate, Sreeram Sundaresh, Hydrogenation of Boron Carbon Nitride Thin Films for Low-k Dielectric Applications, ECS Journal of Solid State Science and Technology, 10 (2021), 093001.
https://iopscience.iop.org/article/10.1149/2162-8777/ac210d
[31]. Rongting Wu, Adrian Gozar, Large-area borophene sheets on sacrificial Cu(111) films promoted by recrystallization from subsurface boron, npj Quantum Materials volume , 4 (2019), 40.
https://www.nature.com/articles/s41535-019-0181-0
[32]. Siby Thomas, Sang Uck Lee, Atomistic insights into the anisotropic mechanical properties and role of ripples on the thermal expansion of h-BCN monolayers, RSC Advances, 9 (2019), 1238-1246.
https://pubs.rsc.org/en/content/articlehtml/2019/ra/c8ra08076c
[33]. Shayan Angizi, Md Ali Akbar, Review—Two-Dimensional Boron Carbon Nitride: A Comprehensive Review, ECS Journal of Solid State Science and Technology, 9 (2020), 083004.
https://iopscience.iop.org/article/10.1149/2162-8777/abb8ef
[34]. Evgeni S. Penev, Somnath Bhowmick, Polymorphism of Two-Dimensional Boron, American Chemical Society, 5 (2012), 2441-2445. https://pubs.acs.org/doi/full/10.1021/nl3004754
[35]. Walter R. L. Lambrecht, Benjamin Segall, Anomalous band-gap behavior and phase stability of c-BN–diamond alloys, PHYSICAL REVIEW B, 47 (1993), 9289.
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.47.9289
[36]. Md. Abdul Mannan, Yuji Baba, Hexagonal Nano-Crystalline BCN Films Grown on Si (100) Substrate Studied by X-Ray Absorption Spectroscopy, Materials Sciences and Applications, 4 (2013), 9
https://www.scirp.org/html/3-7700988_31618.htm
[37]. D.Y. Guo, P.G. Li, Z.W. Chen, Z.P. Wu, W.H. Tang, Ultra-wide bandgap semiconductor of β-Ga2O3 and its research progress of deep ultraviolet transparent electrode and solar-blind photodetector, Acta Phys. Sin., 68(7) (2019), 078501.
https://doi.org/10.7498/aps.68.20181845
[38]. S. Abolhosseini, A. Heshmati, J. Altmann, A review of renewable energy supply and energy efficiency technologies, Cog. Eng. 8145 (2014).
https://dx.doi.org/10.2139/ssrn.2432429
[39]. Wang S, Wei T, Qi Z., Supercapacitor energy storage technology and its application in renewable energy power generation system. In: Goswami D.Y., Zhao Y. (eds) Proceedings of ISES World Congress 2007 (Vol. I–Vol. V). Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-540-75997-3_566
[40]. N. Nitta, F. Wu, J.T. Lee, G. Yushin, Li-ion battery materials: present and future, Mater Today, 18 (5) (2015), 252-264.
https://doi.org/10.1016/j.mattod.2014.10.040
[41]. W. Raza, F. Ali, N. Raza, Y. Luo, K.H. Kim, J. Yang, et al., Recent advancements in supercapacitor technology, Nano Energy, 52 (2018), 441-473.
https://doi.org/10.1016/j.nanoen.2018.08.013
[42]. J. Xie, P. Yang, Y. Wang, T. Qi, Y. Lei, C.M. Li, Puzzles and confusions in supercapacitor and battery: theory and solutions, J Power Sources, 401 (2018), 213-223.
https://doi.org/10.1016/j.jpowsour.2018.08.090
[43]. Binoy K. Saikia, Santhi Maria Benoy, Mousumi Bora, Joyshil Tamuly, Mayank Pandey, Dhurbajyoti Bhattacharya, A brief review on supercapacitor energy storage devices and utilization of natural carbon resources as their electrode materials, Fuel, 282 (2020), 118796.
https://doi.org/10.1016/j.fuel.2020.118796.
[44]. N.P. Shetti, S. Dias, K.R. Reddy, Nanostructured organic and inorganic materials for Li-ion batteries: a review, Mater Sci Semicond Process, 104 (2019), 104684.
https://doi.org/10.1016/j.mssp.2019.104684
[45]. R.E. Ruther, C.N. Sun, A. Holliday, S. Cheng, F.M. Delnick, T.A. Zawodzinski Jr., et al., Stable electrolyte for high voltage electrochemical double-layer capacitors, J Electrochem Soc (2017), A277-A283.
https://doi.org/10.1149/2.0951702jes
[46]. Y. Luo, Q. Zhang, W. Hong, Z. Xiao, H. Bai, A High-performance electrochemical supercapacitor based on polyaniline/reduced graphene oxide electrode and copper (ii) ion active electrolyte, Phys. Chem. Chem. Phys., 20 (1) (2017), 131-136.
https://doi.org/10.1039/c7cp07156f
[47]. Yanfang Xu, Weibang Lu, Guangbiao Xu, Tsu-Wei Chou, Structural supercapacitor composites: A review, Composites Science and Technology, 204 (2021), 108636.
https://doi.org/10.1016/j.compscitech.2020.108636
[48]. G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors, Chem. Soc. Rev., 41 (2012), 797-828.
https://doi.org/10.1039/C1CS15060J
[49]. A. González, E. Goikolea, J.A. Barrena, R. Mysyk, Review on supercapacitors: technologies and materials, Renew. Sustain. Energy Rev., 58 (2016), 1189-1206.
https://doi.org/10.1016/j.rser.2015.12.249
[50]. K. Poonam, A. Sharma, S.K. Arora, Tripathi, review of supercapacitors: materials and devices, J. Energy Stor., 21 (2019), 801-825.
https://doi.org/10.1016/j.est.2019.01.010
[51]. R.L. Spyker, R.M. Nelms, Classical equivalent circuit parameters for a double-layer capacitor, IEEE Trans Aerosp Electron Syst, 36 (3) (2000), 829-836.
https://doi.org/10.1109/7.869502
[52]. Y. Show, Research article on electric double-layer capacitor fabricated with addition of carbon nanotube to polarizable electrode, J Nanomater (2012), 1-8.
https://doi.org/10.1155/2012/929343
[53]. M. Yassine, D. Fabris, Performance of commercially available supercapacitors, Energies, 10 (9) (2017), 1340-1352.
https://doi.org/10.3390/en10091340
[54]. Kim BK, Sy S, Yu A, Zhang J., Electrochemical supercapacitors for energy storage and conversion, Handbook of Clean Energy Systems, Wiley Publications (2015), 1-25.
https://doi.org/10.1002/9781118991978.hces112.
[55]. Yong S., Fabrication and characterisation of fabric supercapacitor [Doctoral Thesis], University of Southampton (2016) p.160.
[56]. B.E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, Kluwer Academic/Plenum Publishers, New York (1999).
[57]. V. Augustyn, P. Simon, B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage, Energy Environ. Sci., 7 (2014), 1597-1664.
https://doi.org/10.1039/C3EE44164D
[58]. C. Zhao, W. Zheng, A review for aqueous electrochemical supercapacitors, J. Front. Energy Res., 3(23) (2015), 1-8.
https://doi.org/10.3389/fenrg.2015.00023
[59]. Sachin Kumar, Ghuzanfar Saeed, Ling Zhu, Kwun Nam Hui, Nam Hoon Kim, Joong Hee Lee, 0D to 3D carbon-based networks combined with pseudocapacitive electrode material for high energy density supercapacitor: A review, Chemical Engineering Journal, 403 (2021), 126352.
https://doi.org/10.1016/j.cej.2020.126352
[60]. W. Jiang, F. Hu, Q. Yan, X. Wu, Investigation on electrochemical behaviors of NiCo2O4 battery-type supercapacitor electrodes: the role of aqueous electrolyte, Inorg Chem Front, 4(10) (2017), 1642-1648.
https://doi.org/10.1039/C7QI00391A
[61]. D.P. Dubal, O. Ayyad, V. Ruiz, P. Gomez-Romero, Hybrid energy storage: the merging of battery and supercapacitor chemistries, Chem Soc Rev, 44(7) (2015), 1777-1790.
https://doi.org/10.1039/C4CS00266K
[62]. Y. Jiang, J. Liu, Definitions of pseudocapacitive materials: a brief review, Energy Environ Mater, 2(1) (2019), 30-37.
https://doi.org/10.1002/eem2.12028
[63]. Shuilin Wu, Yatu Chen, Tianpeng Jiao, Jun Zhou, Junye Cheng, Bin Liu, Shaoran Yang, Kaili Zhang,Wenjun Zhang, An Aqueous Zn-Ion Hybrid Supercapacitor with High Energy Density and Ultrastability up to 80,000 Cycles, Advanced Energy Materials, 9(47) (2019), 1902915.
https://doi.org/10.1002/aenm.201902915
[64]. Hung-Hua Chien, Chen-Yu Liao, Yu-Chuan Hao, Cheng-Che Hsu, I-Chun Cheng, Ing-Song Yu, Jian-Zhang Chen, Improved performance of polyaniline/reduced-graphene-oxide supercapacitor using atmospheric-pressure-plasma-jet surface treatment of carbon cloth, Electrochimica Acta, 260 (2018), 391-399.
https://doi.org/10.1016/j.electacta.2017.12.060
[65]. Sachin A. Pawar, Dipali S. Patil, Jae Cheol Shin, Hexagonal sheets of Co3O4 and Co3O4-Ag for high-performance electrochemical supercapacitors, Journal of Industrial and Engineering Chemistry, 54 (2017), 162-173.
https://doi.org/10.1016/j.jiec.2017.05.030
[66]. Karbhal, R.R. Devarapalli, J. Debgupta, V.K. Pillai, P.M. Ajayan, M.V. Shelke, Facile green synthesis of BCN nanosheets as high-performance electrode material for electrochemical energy storage, Chem. Eur J. 22 (2016) 7134e7140.
https://doi.org/10.1002/chem.201505225
[67]. Zhenyan Liang, Huayao Tu, Dong Shi, Fuzhou Chen, Hehe Jiang, Yongliang Shao,Yongzhong Wu, and Xiaopeng Hao, In Situ Growing BCN Nanotubes on Carbon Fibers for Novel High-Temperature Supercapacitor with Excellent Cycling Performance, Small 2021, 17, 2102899
https://doi.org/10.1002/smll.202102899
[68]. Indrapal Karbhal, Aniruddha Basu , Apurva Patrike, Manjusha V. Shelke, Laser patterning of boron carbon nitride electrodes for flexible micro-supercapacitor with remarkable electrochemical stability/capacity, Carbon 171 (2021) 750e757
https://doi.org/10.1016/j.carbon.2020.09.053
[69]. Dan Tu , Jianhua Xu , Wenyao Yang, Liuwei Shi, Xi Chen , Yi Li, Yajie Yang , Chunming Gao, Synthesis of three-dimensional boron carbon nitrogen/reduced grapheme oxide broccoli as electrode material for flexible micro-supercapacitors, Surfaces and Interfaces 30 (2022) 101873
https://doi.org/10.1016/j.surfin.2022.101873
[70]. Shuo Dou , Xiaobing Huang, Zhaoling Ma , Jianghong Wu and Shuangyin Wang, A simple approach to the synthesis of BCN graphene with high capacitance, Nanotechnology 26 (2015) 045402
https://doi.org/10.1088/0957-4484/26/4/045402

無法下載圖示 全文公開日期 2025/08/16 (校內網路)
全文公開日期 2025/08/16 (校外網路)
全文公開日期 2025/08/16 (國家圖書館:臺灣博碩士論文系統)
QR CODE