簡易檢索 / 詳目顯示

研究生: 何朝瑋
CHAO-WEI HE
論文名稱: 結合修正FUZZY DANP及修正FUZZY MOORA法於集魚燈改善方案之評選與設計
Combiming of Modified Fuzzy DANP with Modified Fuzzy MOORA in the Selection of Plan of Fishing Light Design
指導教授: 林榮慶
Zone - ching Lin
口試委員: 王國雄
Kuo-shong Wang
許覺良
Chaug-liang Hsu
傅光華
Kuang-hua Fuh
楊條和
Tyau-Her Young
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 244
中文關鍵詞: LED集魚燈技術/功能矩陣修正式FUZZY DANP修正式FUZZY MOORA修正式TRIZ
外文關鍵詞: fishing light, technical/functional matrix, modified fuzzy DANP, modified fuzzy MOORA, modified TRIZ
相關次數: 點閱:322下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究先以LEDLED牙科燈為例,發展出結合修正式FUZZY DANP之修正式FUZZY MOORA方法進一步得到技術改善方案的優先順序及優先改善方案。
    本研究將結合修正式FUZZY DANP之修正式FUZZY VIKOR法與結合修正式FUZZY DANP之修正式FUZZY MOORA法代入LEDLED牙科燈所得各自之技術改善方案順序進行比較分析。此外,本研究再將結合修正式FUZZY DANP之修正式FUZZY MOORA法應用在LEDLED集魚燈,經相關文獻探討與各項專利分析,將LEDLED集魚燈第一層技術領域分為1.整體燈具支撐結構技術、2.散熱技術和3.光源照射及控制技術,再由第一層技術領域中,得到第二層技術領域,分為1.支架結構技術、2.防水結構技術、3.水冷卻散熱結構技術、4.氣冷散熱結構技術、5.光源照射範圍技術、6.光源布置及變化技術與7.燈源及電源控制技術七項技術領域,每個技術領域再經由斷詞斷字系統找出重要的技術字和元件關鍵字並依關鍵字出現次數與相關專利全文總字數之比值得出常態化數值。再透過第一層技術領域的三項主要技術領域建立出具有技術相依性的三個技術改善方案,分為A.整體燈具支撐支架結構技術+散熱技術、B. 散熱技術+光源照射及控制技術、C. 整體燈具支撐支架結構技術+光源照射及控制技術。在結合修正式FUZZY DANP及修正式FUZZY MOORA方法中,上述7個技術領域為7個技術準則。本文的修正式FUZZY MOORA方法,其步驟一、先將模糊後W2的χ_ij值進行正規化得到χ_ij^*矩陣,步驟二、再模糊正規化χ_ij^*矩陣得出正規化χ ̃_ij矩陣,步驟三、從W2矩陣中計算各準則j對各方案i的模糊化權重值相加後的總值,且從各準則j對不同方案i中之不同總值中,可觀察出模糊化權重值相加後較大總值所對應的幾個相關準則j對方案i的ij項次,以及模糊化權重值相加後較小總值所對應的幾個相關準則j對方案i的ij項次,由步驟二求出的模糊化後的正規化χ ̃_ij矩陣找出前述準則j對方案i的模糊化權重值相加後的總值較大的準則j對方案i的新的模糊化矩陣,本文將其以新的模糊化矩陣〖χ ̃_ij |〗_(N+)表示。因新的模糊化矩陣〖χ ̃_ij |〗_(N+),在針對準則j對方案i模糊化權重值相加後的總值較大的正影響值公式∑_(j=1)^h▒〖〖ω_j |〗_(N+)∙〖χ ̃_ij |〗_(N+) 〗中,j項為方案i所示於正影響值公式所對應的準則j,且在此式中j=1到j=h為前述模糊化權重值相加後總值較大的準則j對方案i的j的項次,而在此式中〖ω_j |〗_(N+)為由W_C^D=ω_j得出之ω_j,且進一步在正影響值公式中〖ω_j |〗_(N+)的j為對應於〖χ ̃_ij |〗_(N+)的j項次的準則j,故本文將其以〖ω_j |〗_(N+)表示。
    另外,針對從W2矩陣中計算各準則j對各方案i的模糊化權重值相加後的總值,從各準則j對不同方案i中之不同模糊化權重值相加的總值中,可觀察出模糊化權重值相加後較小的模糊化權重值相加的總值所對應的幾個相關準則j對方案i的ij項次。由步驟二求出的模糊化後的χ ̃_ij矩陣找出前述準則j對方案i的模糊化權重值相加的總值較大的以外的其他模糊化權重值相加的總值較小的準則j對方案i的新的模糊化矩陣,本文將其以新的模糊化矩陣〖χ ̃_ij |〗_(N-)表示。因新的模糊化矩陣〖χ ̃_ij |〗_(N-)在針對準則j對方案i模糊化權重值相加後的總值較小的公式負影響值∑_(j=h+1)^n▒〖〖ω_j |〗_(N-)∙〖χ ̃_ij |〗_(N-) 〗中,j項為方案i所示於負影響值公式所對應的準則j,在此式中j=h+1到j=n為前述模糊化權重值相加後總值較小的準則j對方案i的j項次,而在此式中〖ω_j |〗_(N-)為由W_C^D=ω_j得出之ω_j,且在負影響值公式中〖ω_j |〗_(N-)的j為對應於〖χ ̃_ij |〗_(N-)的j項次的準則j,故本文將其以〖ω_j |〗_(N-)表示。步驟四、計算各方案的相對權重值yi並對各方案進行優先順序的排序。若某方案i計算出的相對權重值y_i較大,就表示這方案i有較高的優先順序,最後所計算出的最大權重值y_i的方案i為最優先的選擇方案。
    最後再應用LEDLED集魚燈的技術/功能矩陣,對可改善的技術方案選擇出適當的技術準則做改良,並搭配TRIZ創研法則尋找出對應的創新法則,來思考如何改良在LED集魚燈上最優先改善的技術方案,最後提出新的改善設計案例。


    Taking LED dental light for case study, the paper develops a modified fuzzy MOORA method being combined with the modified fuzzy DANP to further acquire the priority order of technical improvement plans as well as the prioritized improvement plan.
    The paper substitutes the modified fuzzy VIKOR method being combined with the modified fuzzy DANP as well as the modified fuzzy MOORA method being combined with the modified fuzzy DANP in the sequence of the acquired respective technical improvement plans of LED dental light, and then make comparative analysis. Besides, the paper applies the modified fuzzy MOORA method being combined with the modified fuzzy DANP to LED fishing light. After the related literature review and analysis of different patents are made, the paper divides the 1st-layer technical field of fishing. 1. Integral lamp support structure technique; 2. Heat dissipation technique; and 3. Light source illumination and control technique. From the 1st-layer technical field, the 2nd-layer technical field can be acquired, and is divided into 7 technical fields: 1. Support structure technique; 2. Waterproof structure technique; 3. Water cooling and heat dissipation structure technique; 4. Air cooling and heat dissipation structure technique; 5. Light source illumination range technique; 6. Light source layout and change technique; and 7. Light source and power control technique. After each technical field goes through the term and word segmentation system, important technical words and keywords of component can be found. According to the number of times of appearance of the keywords as well as the ratio of total number of words of the related patents in full text, normalized numerical values can be acquired. After that, through 3 main technical fields in the 1st-layer technical field, 3 technical improvement plans with technical interdependence can be established, namely: A. Integral lamp support structure technique + Heat dissipation technique; B. Heat dissipation technique + Light source illumination and control technique; and C. Integral lamp support structure technique + Light source illumination and control technique. In the modified fuzzy MOORA method being combined with the modified fuzzy DANP, the 7 technical fields aforesaid are just the 7 technical criteria of LED fishing light. The paper’s modified fuzzy MOORA method contains these steps: Step 1. Normalize the χ_ij value of the fuzzified W2 to acquire matrix χ_ij^*. Step 2. Fuzzify normalize matrix χ_ij^* to acquire a normalized matrix χ ̃_ij. Step 3. From matrix W2, calculate the total value by adding up the fuzzfied weight values of the pair of each criterion j for each plan i. And from different total values of the pairs of each criterion j for different plans i, it can be observed that after adding up the fuzzified weight values, a greater total value corresponds to item ij of the pair of several related criteria j for plan i; and after adding up the fuzzified weight values, a smaller total value corresponds to item ij of the pair of several related criteria j for plan i. From the fuzzified normalized matrix X ̃_ij acquired in Step 2, find a new fuzzified matrix of the pair of criterion j for plan i in a greater total value after adding up the fuzzified weight values of the pair of criterion j for plan i aforesaid. This new fuzzified matrix is expressed by the paper as 〖χ ̃_ij |〗_(N+). For the new fuzzified matrix 〖χ ̃_ij |〗_(N+), focusing on the positive effect value equation ∑_(j=1)^h▒〖〖ω_j |〗_(N+)∙〖χ ̃_ij |〗_(N+) 〗 in a greater total value after adding up the fuzzified weight values of the pair of criterion j for plan i, item j is the corresponding criterion j of positive effect value equation as shown in plan i. And in this equation, the range from j=1 to j=h is item j of the pair of criterion j for plan i in a greater total value after adding up the fuzzified weight values aforesaid. And in the above equation, the ω_j of 〖ω_j |〗_(N+) is acquired from W_C^D=ω_j. Furthermore, the j of 〖ω_j |〗_(N+) in the positive effect value equation is just criterion j that corresponds to item j of 〖χ ̃_ij |〗_(N+), so that it is expressed by the paper as 〖ω_j |〗_(N+). Besides, focusing on the total value after adding up the fuzzified weight values of the pair of each criterion j for each plan i calculated from matrix W2, from the total value acquired after adding up different fuzzified weight values of the pair of each criterion j for different plans i, it can be observed that after adding up the fuzzified weight values, item ij of the pair of several related criteria j for plan i, is an item that the smaller total value of the sum of fuzzified weight values corresponds to. From the fuzzified matrix χ ̃_ij acquired in Step 2, find a new fuzzified matrix of the pair of criterion j and plan i in a smaller total value after adding up the fuzzified weight values other than the greater total value that is acquired from adding up of the fuzzified weight values of the pair of criterion j for plan i aforesaid. This matrix is expressed by the paper as a new fuzzified matrix 〖χ ̃_ij |〗_(N-). For the new fuzzified matrix 〖χ ̃_ij |〗_(N-), focusing on the negative effect value equation ∑_(j=h+1)^n▒〖〖ω_j |〗_(N-)∙〖χ ̃_ij |〗_(N-) 〗 in a smaller total value after adding up the fuzzified weight values of the pair of criterion j for plan i, item j is the corresponding criterion j of the negative effect value equation as shown in plan i. In this equation, the range from j=h+1 to j=n is item j of the pair of criterion j and plan i in a smaller total value after adding up the fuzzified weight values aforesaid. And in the above equation, the ω_j of 〖ω_j |〗_(N-) is acquired from W_C^D=ω_j. Besides, the j of 〖ω_j |〗_(N-) in the negative effect value equation is just criterion j that corresponds to item j of 〖χ ̃_ij |〗_(N-) , so that it is expressed by the paper as 〖ω_j |〗_(N-). In Step 4, calculate the relative weight value y_i of each plan, and make a priority order of the various plans. If the relative weight value y_i calculated by a certain plan i is greater, it refers that this plan i has higher priority. The plan i with the greatest weight value y_i finally calculated is the most prioritized selected plan. Finally, the technical/functional matrix of LED fishing light is applied. Based on the technical plans to be improved, select appropriate technical criteria for improvement; and with the help of TRIZ innovative research rules, find the corresponding innovative rules, and think about how to improve the LED fishing light’s most prioritized technical improvement plan. In the end a new improvement case of design is proposed.

    摘要 i Abstract iv 誌謝 ix 目錄 x 圖目錄 xv 表目錄 xviii 第一章 緒論 1 1.1研究背景與研究動機目的 1 1.2 LED文獻回顧 1 1.3 LED牙科燈相關文獻 3 1.4 LED集魚燈相關文獻 4 1.5修正式TRIZ相關文獻 5 1.6專利分析相關文獻 8 1.7模糊決策實驗室法(FUZZY DEMATEL)結合模糊分析網路程序法(FUZZY ANP)之FUZZY DANP法的相關文獻 8 1.8模糊折衷排序法(FUZZY VIKOR)的相關文獻 10 1.9模糊基於比率的多目標優化分析法(FUZZY MOORA)相關文獻 11 1.10論文架構 12 第二章 LED牙科燈與LED集魚燈相關理論介紹 15 2.1 LED牙科燈介紹 15 2.2LED集魚燈介紹 18 2.3光學理論 22 2.3.1光通量(Φ) 22 2.3.2照度(E) 22 2.3.3發光強度(I) 23 2.3.4配光曲線 24 2.4熱傳遞理論 26 2.4.1熱傳導傳遞 26 2.4.2熱對流傳遞 28 第三章 修正式TRIZ分群法介紹 29 3.1 TRIZ源起 29 3.2 TRIZ理論基礎 29 3.3修正式TRIZ分群法 32 3.4修正式分群法TRIZ判讀流程 35 第四章 結合修正式FUZZY DANP與修正式FUZZY VIKOR之決策程序評選優先改良方案 39 4.1模糊集簡介 39 4.1.1歸屬函數 40 4.1.2標準交集(Standard Intersection) 41 4.1.3 α-截集(α-cut) 41 4.2模糊分析網路程序法(Fuzzy ANP)決策程序 41 4.3模糊決策實驗室分析法(Fuzzy DEMATEL)之程序 43 4.4模糊折衷排序法(Fuzzy VIKOR)之基本概念 46 4.4.1修正式模糊折衷排序法(Fuzzy VIKOR)決策程序 47 4.5結合修正式模糊DANP與修正式模糊VIKOR之決策步驟 50 第五章 結合修正式FUZZY DANP與修正式FUZZY MOORA之決策程序評選優先改良方案 60 5.1 MOORA分析法介紹 60 5.2 MOORA分析法基本概念 60 5.3 FUZZY MOORA分析法基本概念 60 5.4修正式模糊基於比率的多目標優化分析法(Fuzzy-MOORA)決策程序 61 5.5結合修正式FUZZY DANP與修正式FUZZY MOORA之決策步驟 64 第六章 以產品技術結合修正式FUZZY DANP與修正式模糊VIKOR評選LED牙科燈優先改良方案 73 6.1利用專利技術字篩選出產品技術之準則 73 6.2產品技術結合修正式模糊ANP評選LED牙科燈各項權重之過程 75 6.2.1建立層級架構 76 6.2.2產品技術結合修正式模糊ANP評選LEDLED牙科燈步驟過程 77 6.3產品技術結合修正式模糊DEMATEL計算LED牙科燈之過程 98 6.3.1定義LED牙科燈各準則常態化數值 98 6.3.2修正式模糊DEMATEL應用於LED牙科燈計算過程 99 6.4產品技術結合修正式模糊DANP評選LED牙科燈步驟過程 105 6.5產品技術結合修正式模糊VIKOR評選LED牙科燈優先改良方案之過程 107 第七章 以產品技術結合修正式FUZZY DANP與修正式FUZZY MOORA評選LED牙科燈優先改良方案 113 7.1利用專利技術字篩選出產品技術之準則 113 7.2產品技術結合修正式模糊ANP評選LED牙科燈 114 7.2.1建立層級架構 115 7.2.2產品技術結合修正式模糊ANP評選LEDLED牙科燈步驟過程 116 7.3產品技術結合修正式FUZZY DANP與修正式FUZZY MOORA計算LED牙科燈優先改良方案之過程 136 第八章 以產品技術結合修正式FUZZY DANP與修正式FUZZY MOORA評選LED集魚燈優先改良方案 154 8.1利用專利技術字篩選出產品技術之準則 154 8.2產品技術結合修正式模糊ANP評選LED牙科燈 156 8.2.1建立層級架構 158 8.2.2產品技術結合修正式模糊ANP評選LEDLED集魚燈步驟過程 159 8.3產品技術結合修正式模糊DANP與修正式模糊MOORA計算LED集魚燈優先改良方案之過程 180 第九章 LED集魚燈修正式TRIZ創新個別方案研發過程及模擬 198 9.1 LED集魚燈技術改善方向之選擇 198 9.2 技術改善所選用欲改善專利介紹 198 9.3 運用修正式TRIZ在LED集魚燈的技術改良與模擬 200 第十章 結論 212 參考資料 214

    [1] Holonyak, J. N. and Bevacqua, S. F., “Coherent (visible) Light Emission from Ga (As1-xPx) Junctions,” Applied Physics Letters, Vol.1, Issue 4, pp.82-83 (1962).
    [2] Steigerwald, D. A. and Bhat, J. C. and Collins, D. and Fletcher, R. M. and Holcomb, M. O. and Ludowise, M. J. and Martin, P. S. and Rudaz, S. L., “Illumination with Solid State Lighting Technology,” IEEE Journal of Selected Topics in Quantum Electronics, Vol.8, Issue 2, pp.310-320 (2002).
    [3] McGlen, R. J. and Jachuck, R. and Lin, S., “Integrated Thermal Management Techniques for High Power Electronic Devices,” Applied Thermal Engineering, Vol.24, Issue 8-9, pp.1143-1156 (2004).
    [4] Jang, D. and Yu, S. H. and Lee, K. S., “Multidisciplinary Optimization of a Pin-fin Radial Heat Sink for LED Lighting Applications,” International Journal of Heat and Mass Transfer, Vol.55, Issue 4,pp.515-521 (2012).
    [5] Culham, J.R. and Muzychka, Y.S., “Optimization of Plate Fin Heat Sinks Using Entropy Generation Minimization, ” IEEE Transactions on Components and Packaging Technologies, Vol.24, pp.159-165(2001).
    [6] 沈峰民,適用於發光二極體照明設備之調光電路與控制方法,台灣發明專利,I434616(2014)。
    [7] 黃献隆,廣角照射LED燈具構造,台灣發明專利,M389809(2010)。
    [8] Rose, E. P. and Hayman, R. and Karten, S.,牙科應用之照明系統,台灣發明專利,TW200614968 (2005)。
    [9] 謝其昌、李彥輝、唐誠燦,LED牙科燈之反光罩,台灣發明專利,TWi503506 (2013)。
    [10] Greppin, E. H., “Dental operating lamp construction,” 美國專利, US2437516 (1948).
    [11] Thomas, L. H., Wedell, M. and Spencer, J. W., “LED-BASED DENTAL EXAM LAMP”美國專利, US20180347800 (2018).
    [12] 陳文進、王偉、鄭潤古,捕魚燈,CN104421814(2015)
    [13] 劉波,捕魚燈,CN102893959A(2015)
    [14] 蘇炎坤、黃金泉、林俊良 ,LED集魚燈具裝置,TW200920251 (2009)
    [15] Goldfire Innovator, http://www.inventionmachine.com/index.htm
    [16] Liu, C. C. and Chen, J. L., “Development of Product Green Innovation Design Method,” Proceedings of EcoDesign : Second International Symposium on Environmentally Conscious Design and Inverse Manufacturing, Tokyo, Japan, pp.168-173 (2001).
    [17] Liu, C. C. and Chen, J. L., “A TRIZ Inventive Product Design Method without Contradiction Information,” The TRIZ Journal, Paper No. 6, http://www.triz-journal.com (2001).
    [18] Chang, H. T. and Chen J. L., “An Approach Combining Extension Method with TRIZ for Innovative Product Design,” Journal of the Chinese Society of Mechanical Engineers, Vol.25, pp.13-22 (2004).
    [19] Low, M. T. and Lamvik, K. W. and Myklebust,O., “Manufacturing a Green Service: Engaging the TRIZ Model of Innovation,” IEEE Transactions on Electronics Packaging Manufacturing, Vol. 24, Issue 1, pp.10–17 (2001).
    [20] Chang, H.T. and Chen, J. L., “The Conflict-Problem-Solving CAD Software Integrating TRIZ into Eco-Innovation,” Advances in Engineering Software, Vol.35, Issue 8-9, pp.553-566 (2004).
    [21] Wang, H. and Chen, G. and Lin Z. and Wang, H., “Algorithm of Integrating QFD and TRIZ for the Innovative Design Process,” International Journal of Computer Applications in Technology, Vol.23, Issue 1, pp.41-52 (2005).
    [22] Tong, L. H. and He, C. and Shen, L., “Automatic Classification of Patent Documents for TRIZ Users,” World Patent Information, Vol.28, pp.6-13 (2006).
    [23] Terninko, J., ”The QFD, TRIZ and Taguchi Connection : Customer– Driven Robust Innovation,” The Ninth Symposium on Quality Function Deployment, pp.374-380 (1997).
    [24] León-Rovira, N. and Aguayo, H., “A new Model of the Conceptual Design Process using QFD/FA/TRIZ,” The TRIZ Journal. http://www.triz-journal.com/, July (1998).
    [25] Apte, P. R. and Mann, D. L., “Taguchi and TRIZ: Comparisons and Opportunities,” The TRIZ Journal, http://www.triz-journal.com/, November, (2001).
    [26] Mann, D. L., “Assessing the Accuracy of the Contradiction Matrix For Recent Mechanical Inventions,” The TRIZ Journal.http://www.triz-journal.com/, February (2002).
    [27] Fey, V. and Rivin, E., “Innovation on Demand: New Product Development Using TRIZ,” Cambridge University Press, UK, (2005).
    [28] Savransky, S. D., “Engineering of Creativity –Introduction to TRIZ Methodology of Inventive Problem Solving”, CRC Press, New York, (2000).
    [29] 鄭振興,「利用知識工程技術進行支撐結構設計評估與設計改善之研究」,國立台灣科技大學機械工程學系,博士論文,台北(2011)。
    [30] 黃浩誠,「應用改良之TRIZ理論結合QFD於補償式化學機械拋光終點偵測及補償路徑之改善」,國立台灣科技大學機械工程學系,碩士論文,台北(2007)。
    [31] Fontela, E. and Gabus, A., “The DEMATEL observer” Battelle Geneva ResearchCenter, Switzerland Geneva.(1976).
    [32] O’Leary, D. E., “Enterprise Knowledge Management,” IEEE Computer, Vol.31, pp.54-61 (1998).
    [33] 杜家宏,「整合繁體和簡體中文及英文斷詞斷字系統之發光二極體檯燈專利分析研究」,碩士論文,國立台灣科技大學機械工程學系,台北,民國一百年。
    [34] Fontela, E. and Gabus, A., “The DEMATEL observer ,” Battelle Geneva ResearchCenter, Switzerland Geneva.(1976).
    [35] Tzeng, G. H. and Chiang, C. H. and Li, C. W., “Evaluating intertwined effects ine-learning programs: A novel hybrid MCDM model based on FactorAnalysis and DEMATEL,” Expert Systems with Applications Vol.32, No4, pp.1028-1044 (2007).
    [36] Lin C. J. and Wu W. W., “A Fuzzy Extension of the DEMATEL method for group decision making” 第一屆作業研究學會學術研討會論文集,台北科技大學,台灣 (2004)。
    [37] Snezˇana T. and Slobodan Z. and Mladen K., “A novel hybrid MCDM model based on fuzzy DEMATEL, fuzzy ANP,” Expert Systems with Applications Vol.41, pp.8112-8128. (2014)
    [38] Ou Yang, Y. P. and Shieh, H. M. and Leu, J. D. and Tzeng, G. H., “A Novel Hybrid MCDM Model Combined with DEMATEL and ANP with Applications”, International Journal of Operations Researc, Vol.5, No.3, pp.1-9(2008).
    [39] 李杰穎,「以混合多目標決策方法建立永續供應商評估模型」,中原大學工業與系統工程學系,碩士論文,桃園(2013)。
    [40] Sugiyanto and Rochimah, S.,“Integration of DEMATEL and ANP Methods for Calculate the Weight of Characteristics Software Quality Based Model ISO 9126,”Information Technology and Electrical Engineering (ICITEE), International Conference.(2013).
    [41] Wu,W. W., “Choosing Knowledge Management Strategies by Using a Combined ANP and DEMATEL Approach,”Journal of the Expert Systems with Applications, Vol.35, Issue 3, pp.41-52 (2005).
    [42] Chang, Y. F. and Junzo, W. and Hiroaki, I., “A Fuzzy MCDM Appeoach To Building A Model of High Performance Project Team–A Case Study” ICIC International, pp. 7393–7404 (2012).
    [43] Lu, M. T. and Tzeng, G. H., and Tang L. L., “Environmental Strategic Orientations for Improving Green Innovation Performance in Fuzzy Environment - Using New Fuzzy Hybrid MCDM Model” International Journal of Fuzzy Systems, Vol. 15, No. 3, pp. 297-316(2013).
    [44] Chang, T. H., “Fuzzy VIKOR method: A case study of the hospital service evaluation in Taiwan,” Information Sciences, Vol.271, pp.196-212 (2014).
    [45] Rezaei, M. and Naeeni, M. A. and Motlagh, M. S., “Integrated Fuzzy ANP, Fuzzy VIKOR and goal programming for sourcing in a supply chain: A case study from cable industry,” Decision Science Letters, Vol.2, pp.287-298 (2013).
    [46] Opricovic, S., “Fuzzy VIKOR with an application to water resources planning,” Expert Systems with Applications, Vol.38, pp.12983-12990 (2011).
    [47] Brauers, W. and Zavadskas, E. K., “The MOORA method and its application to privatization in a transition economy” Control and Cybernetics, Vol.35, No.2(2006)
    [48] Shanker, C., “Applications of the MOORA method for decision making in manufacturing environment” Manuf Technol, Vol.54, pp.1155-1166 (2011)
    [49] Hasan, D. and Serhat, Y. and Luis, M., “Interval type 2-based hybrid fuzzy evaluation of financial services in E7 economies with DEMATEL-ANP and MOORA methods” Applied Soft Computig Journal, pp.186-202 (2019)
    [50] Ashoke, K. B. and Dipak, K. J. and Debamalya, B. and Titas, N., “Supplier selection using extended IT2 fuzzy TOPSIS and IT2 fuzzy MOORA considering subjective and objective factors” Soft Computing, Vol.24, pp.8899-8915 (2020)
    [51] 黃志銘,「LED水族燈之結構與散熱改良研究」,國立台灣科技大學機械工程學系,碩士論文,台北(2012)
    [52] 陳啟銘,「結合修正式分析網路程序法與修正式TRIZ發明方法應用於LED閱讀燈創新設計方案優先次序評估」,國立台灣科技大學機械工程學系,碩士論文,台北,民國一百零二年。
    [53] 王家偉,「應用修正式DANP網路程序分析法於LED自行車燈創新方案優先評選次序及創新設計研究」,國立台灣科技大學機械工程學系,碩士論文,台北,民國一百零四年。
    [54] Lin, Z. C. and Chen, C. C., “Innovation Procedurefor Polishing Times Calculations of Compensated CMP Using Multiple Stepsof The Modfied TRIZ Method,” Journal of Innovative Computing, Information and Control, Vol.5, pp.2311-2332. (2009).
    [55] Altshuller, G., “The 40 Principles,” Technical Innovation Center, Inc. Worcester, MA (1997).
    [56] Savransky, S. D., “Engineering of Creativity-Introduction to TRIZ Methodology of Inventive Problem Solving,” CRC Press, New York, (2000).
    [57] Zadeh, L. A., “Fuzzy Sets,” Information and Control, Vol.8, pp.338-353, (1965).
    [58] 李允中、王小璠、蘇木春,模糊理論及其應用,全華圖書,台北,民國一百零一年。
    [59] 萬絢、林明毅、陳宏杰,模糊理論應用與實務,儒林圖書,台北,民國九十五年。
    [60] Han, W. M. and Hsu, C. H. and Yeh, C. Y., “Using DEMATEL to Analyze the Quality Characteristics of Mobile Applications,” Proceedings of the 2014 International Conference on Future Information Engineering and Manufacturing Science, pp.131-134. (2014).
    [61] Opricovic, S., “Multicriteria Optimization of Civil Engineering Systems,” Faculty of Civil Engineering, Belgrade. (1998).
    [62] Awasthi, A. and Govindan, K. and Gold, S., “Multi-tier sustainable global supplier selection using a fuzzy AHP-VIKOR based approach,” International Journal of Production Economics, Vol.195, pp106-117. (2018).
    [63] Wei, J. and Lin, X., “The Multiple Attribute Decision-Making VIKOR Method and Its Application,” International Conference on Wireless Communications, Networking and Mobile Computing, (2008).
    [64] Saaty, T. L. “Decision Making for Leaders:The Analytical Hierarchy Process for Decisions in a Complex World”, Belmont, CA:Wadsworth. (1982).
    [65] Lin, C. J. and Wu, W. W., “A Causal Analytical Method for Group Decision-Makingunder Fuzzy Environment,” Expert Systems with Applications, Vol.34, No.1 ,pp.205-213. (2008).
    [66]余添枝,海上LED集魚燈的增幅器,TW201311142A1(2013)

    無法下載圖示 全文公開日期 2025/08/12 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE