簡易檢索 / 詳目顯示

研究生: 林師弘
Shi-Hong Lin
論文名稱: 5G短碼長低密度奇偶檢查碼之基於停止集選擇的解碼方法
Decoding with Stopping set selection in Short length LDPC for 5G
指導教授: 林士駿
Shih-Chun Lin
口試委員: 謝欣霖
Xin-Lin Xie
黃昱智
Yu-Zhi Huang
沈中安
Chung-An Shen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 32
中文關鍵詞: 短碼長低密度奇偶檢查碼低密度奇偶檢查碼停止集置信傳遞和積演算法
外文關鍵詞: Short Length low density parity check
相關次數: 點閱:242下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在本篇論文中,我們主要探討的是設計短碼長的低密度奇偶檢查( low density parity check , LDPC)的解碼演算法。一般來說,為了達到香農容量( Shannon capacity )必須使用長碼字( codelength )才能達到[12],但是在應用上過長的碼字會造成過大的延遲( latency ),由於對於較短的碼長,傳統的置信傳遞( belief propagation)解碼演算法的解碼效能並不是很好,主要是因為短碼的LDPC會造成短迴圈導致置信傳播會出現問題。為了改善短碼長下的解碼效能的問題,我們提出了新的解碼方法,利用我們所提出的演算法來找出適合的停止集(Stopping set),藉由選擇適當的停止集(Stopping set)來提高解碼效能,我們的模擬結果顯示出當使用5G標準URLLC下的低密度奇偶檢查碼時,我們所提出的演算法比起一般的置信傳遞的解碼效還更好,並且與先前改善停止集的演算法[3][5]做比較也能夠得到更好的結果,而且跟一般的置信傳遞法一樣,我們提出的演算法複雜度還是與碼長呈線性比例。


In this paper, we mainly discuss the design of short-code length low-density parity check (LDPC) decoding algorithm. Generally speaking, in order to achieve Shannon capacity, long codewords must be used to achieve [12], but the application of too long codewords will cause excessive delay (delay), due to the re-encoding The code length, the decoding performance of the traditional belief transfer (belief propagation) decoding algorithm is not very good, mainly because the short code LDPC will cause short loops and cause problems in placing the letter propagation. In order to improve the problem of decoding performance at short code lengths, we propose a new decoding method, using our proposed algorithm to find a suitable stop set (stop set), by selecting the appropriate stop set (stop set) To improve the decoding performance, our simulation results show that when using the low-density parity check code under the 5G standard URLLC, the proposed algorithm is better than the general decoding of the placement signal transmission, and it stops with the previous improvement. Compared with the set algorithm [3] [5], we can get better results, and like the general placement signal transmission method, the complexity of the algorithm we proposed is still linearly proportional to the code length.

目錄 第一章 7 1.1 引言 7 1.2 研究動機 8 1.3 論文章節概述 8 第二章 9 2.1 5G三大使用場景下的要求及應用 10 第三章 12 3.1 低密度奇偶檢查碼 ( Low-Density Parity-Check code ) 12 3.2 組碼長度 (Blocklength) 14 3.3 5G的奇偶檢查矩陣 (Parity Check Matrix) 14 3.3.1 Quasi-Cyclic Low Density Parity Check code ( QC-LDPC ) 15 3.3.2 3GPP中的奇偶檢查矩陣 ( The Parity Check Matrix 16 in 3GPP ) 16 3.4 置信傳播 (Belief Propagation, BP) 19 第四章 21 4.1 停止集 (Stopping Set) 21 4.2 提出的解碼方法 (Proposed Algorithm ) 22 4-2-1檢查方程(Check equation) 23 4.3 停止集(Stopping set)選擇 23 4-3-1停止集列舉 24 4-3-2 Sub-decoder[15] 24 4-4停止集選擇置信傳播(臨界值=3) 25 4-4-1集選擇增強型置信傳播 26 第五章 27 5-1模擬結果(Simulation) 27 第六章 30 6-1結論(Conclusion) 30 6-2未來展望 30 參考文獻 (Reference) 31

參考文獻 (Reference)

[1] Oumer Teyeb, Gustav Wilstrom et al., “Evolving LTE to fit the 5G future,” Ericsson Technology Review, Jan. 2017

[2] R. G. Gallager, “Low-density parity-check codes,” IRE Trans. Inform. Theory, vol. IT-8, pp. 21–28, Jan. 1962.

[3] C. Di, D. Proietti, I. E. Telatar, T. J. Richardson, and R. L. Urbanke, “Finite-length analysis of low-density parity-check codes on the binary erasure channel,”
IEEE Transactions on Information Theory, vol. 48, no. 6, pp. 1570–1579, June 2002.

[4] K.-C. Chao, “Stopping-set Based Decoder for Short Block Length LDPC in 5G," Master's thesis, NTUST, July 2018.

[5] C. Di, D. Proietti, I. E. Telatar, T. J. Richardson, and R. L. Urbanke, “Finite-length analysis of low-density parity-check codes on the binary erasure channel,”
IEEE Transactions on Information Theory, vol. 48, no. 6, pp. 1570–1579, June 2002.

[6] Guan-Ting Chen, “Short Block Length Polar and LDPC Coding for 5G" Master's thesis, NTUST, January 2019.

[7]Tram Thi Bao Nguyen and Tuy Nguyen Tan and Hanho Lee “Efficient QC-LDPC Encoder for 5G New Radio” , Department of Information and Communication Engineering, Inha University, Incheon 22212, Korea; 22 May 2019; Accepted: 11 June 2019; Published: 13 June 2019

[8] “Study on scenarios and requirements for next generation access technologies (release 14), V14.3.0,” 3GPP, Sophia Antipolis, France, Rep. 38.913, 2017.

[9] M. Bennis, M. Debbah, and H. V. Poor. (Jan. 2018). Ultra-Reliable and Low-Latency Wireless Communication: Tail, Risk and Scale. [Online]. Available: https://arxiv.org/abs/1801.01270

[10] G. B. Kyung and C. Wang, "Finding the Exhaustive List of Small Fully Absorbing Sets and Designing the Corresponding Low Error-Floor Decoder," in IEEE Transactions on Communications, vol. 60, no. 6, pp. 1487-1498, June 2012, doi: 10.1109/TCOMM.2012.042712.100672.

[11] G. B. Kyung and C. Wang, "Finding the Exhaustive List of Small Fully Absorbing Sets and Designing the Corresponding Low Error-Floor Decoder," in IEEE Transactions on Communications, vol. 60, no. 6, pp. 1487-1498, June 2012, doi: 10.1109/TCOMM.2012.042712.100672.

[12] S.-Y. Chung, G.D. Forney, Jr., T. J. Richardson, and R. Urbanke, “ On the Design of Low-Density Parity-Check Codes within 0.0045 dB of the Shannon Limit,” IEEE Commun. Lett., 2001

[13] Rosnes, Eirik. “An efficient algorithm to find all small-size stopping sets of low-density parity-check matrices.” Information Theory, IEEE Transactions on 55.9 (2009): 4167-4178.

[14]3GPP TS 39.212 V16.1.0(2020-03)

[15] S. Kang, J. Moon, J. Ha and J. Shin, "Breaking the Trapping Sets in LDPC Codes: Check Node Removal and Collaborative Decoding," in IEEE Transactions on Communications, vol. 64, no. 1, pp. 15-26, Jan. 2016, doi: 10.1109/TCOMM.2015.2498161.

無法下載圖示 全文公開日期 2025/08/03 (校內網路)
全文公開日期 2025/08/03 (校外網路)
全文公開日期 2025/08/03 (國家圖書館:臺灣博碩士論文系統)
QR CODE