簡易檢索 / 詳目顯示

研究生: 紀旭鴻
Syu-Hong Chi
論文名稱: 新型非接觸式可調光LED驅動電路
A Novel Contactless Wireless Dimmable LED Driver
指導教授: 劉益華
Yi-Hua Liu
口試委員: 王順忠
Shun-Chung Wang
鄧人豪
Jen-Hao Teng
邱煌仁
Huang-Jen Chiu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 92
中文關鍵詞: 非接觸式返馳式轉換器諧振被動開關模組雙脈波寬度調光
外文關鍵詞: contactless, flyback converter, resonant passive switching module, double PWM dimming
相關次數: 點閱:174下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文提出一用於驅動LED 燈之新型非接觸式返馳式轉換器,其變壓器採用無鐵芯和印刷電路板線圈繞製以達到能量傳遞與電氣隔離之功用。又因傳統非接觸式之返馳式轉換器效率低落,故本文整合諧振被動開關模組(Resonant Passive Switch Module, RPSM)至返馳式轉換器,使其具有自動改變電路架構之特性以達到提升轉換效率之目的。RPSM 電路同時可降低輸出電壓漣波使電路以免除使用電解電容,可進一步延長電路使用壽命。所提出的非接觸式架構在一次側採用低切換頻率之責任週期控制,因此可採用低成本微控制器實現調光控制。此外,本文所提出的電路其電壓轉換增益可以自動克服LED 串的順向導通電壓,因此適合LED 驅動之應用場合。為了進一步改善效率,本文同時採用雙脈波寬度調光,並利用ZigBee 來實現無線調光功能。
本文針對轉換器的工作原理、動作分析以及元件設計流程作介紹,並研製一12W 之原型電路,實驗結果用以驗證本文所提出之轉換器的正確性和性能改善,並與傳統返馳式轉換器相較,所提出的新型電路其平均效率改善了10.84%,而輸出漣波改善了70.96%。


In this thesis, a novel contactless, low profile and low output ripple dc-to-dc converter is first proposed. A coreless printed-circuit board (PCB) transformer is employed for energy transferring and isolation. To improve the power conversion efficiency, a resonant passive switching module (RPSM) is proposed and embedded in the conventional flyback converter. The presented RPSM module features the characteristic of automatic circuit structure change and boasts advantages such as low output ripple and better efficiency. Due to the lower output ripple, small non-electrolytic capacitors can be used to achieve longer life time. Another special feature of the proposed converter is that simple duty ratio control in the primary side as well as the low switching frequency can be adopted, which allows one to utilize a low cost microcontroller to realize the dimming control. In addition, the voltage conversion gain of the proposed converter can automatically overcome the forward voltage drop of LED strings, which makes it suitable for LED driving applications. To further improve the efficiency, double PWM dimming is also implemented. Finally, ZigBee module is utilized to attain wireless dimming capability.
In this thesis, operation principle, theoretical analysis as well as design guidelines of the converter is first provided. A 12 W prototyping circuit is then constructed and the experimental results and measured to validate the effectiveness of the proposed converter. Compared with those of a traditional flyback converter, the efficiency can be improved by 10.84 % with the embedded RPSM, and the output ripple can be improved by 70.96 %.

摘要 Abstract 誌謝 圖目錄 表目錄 第一章 緒論 1.1 研究動機與目的 1.2 文獻探討 1.3 論文大綱 第二章 非接觸式電能傳遞 2.1 非接觸式電源系統 2.2 變壓器等效電路模型 2.3 非接觸式電能傳遞技術 2.3.1 磁感應(Magnetic Inductive) 2.3.2 磁諧振(Magnetic Resonance) 2.3.3 微波射頻(Microwave Radiation) 2.4 非接觸式電能傳遞技術之聯盟標準 2.4.1 WPC 之Qi 標準 2.4.2 A4WP 之Rezence 標準 2.5 非接觸式電能傳遞之安全問題 2.6 驅動電路架構 第三章 新型非接觸式LED 驅動電路原理與設計 3.1 諧振被動開關模組工作原理 3.2 新型非接觸式LED 驅動電路工作原理 3.3 新型非接觸式LED 驅動電路元件設計 3.3.1 一次側線圈電感設計 3.3.2 諧振被動開關模組之電感設計 3.3.3 輸出電容及諧振被動開關模組之電容設計 3.3.4 緩振電路元件設計 3.4 新型非接觸式LED 驅動電路設計流程 第四章 LED 驅動電路韌體設計 4.1 PIC16F1825 微控制器簡介 4.2 ZigBee 無線通訊網路技術簡介 4.2.1 ZigBee 技術概述 4.2.2 ZigBee 無線通訊網路協定堆疊與網路架構 4.2.3 ZigBee 無線通訊網路架構及建置網路 4.2.4 XBee Series1 模組簡介 4.3 LED 調光控制方法 4.4 數位調光控制核心與手機調光介面 4.4.1 RS-232 通訊規 4.4.2 數位調光控制流程 第五章 模擬與實驗結果 5.1 新型非接觸式LED 驅動電路模擬結果 5.2 新型非接觸式LED 驅動電路實驗結果 5.2.1 實驗數據與波形圖 5.2.2 克服LED 負載導通電壓之功能驗證 第六章 結論與未來展望 6.1 結論 6.2 未來展望 參考文獻

[1] 王文伯、蕭弘清、宋福生、郭華生、李恩昀、宋平生、羅欽煌,「照明系統Q&A 節能技術手冊」,台灣綠色生產力基金會,2008 年。
[2] R. Guan, D. Tian, and X. Wang, "Design and Implementation of LED Daylight Lamp Lighting System, " in International Conference on Electronic Packaging Technology & High Density Packaging (ICEPTHDP), Shanghai, 2008, pp. 1-3.
[3] S. J. Pack, S. M. Kim, and C. S. Won, "Design Considerations for Pico-Projector Based on LCoS and 3-LEDs, " in International Conference on Consumer Electronics (ICCE), Las Vegas, 2011, pp. 805-806.
[4] H. J. Chiu and S. J. Cheng, "LED Backlight Driving System for Large-Scale LCD Panels, " IEEE Transactions on Industrial Electronics, vol. 54, no. 5, pp. 2751-2760, Oct. 2007.
[5] H. Murat, D. Cuypers, and H. D. Smet, "Design of New Collection System for Multi LED Light Engines, " in Proc. SPIE., vol. 6196, pp. 04-1-11, Apr. 2006.
[6] Y. Jang and M. M. Jovanovic, "A Contactless Electrical Energy Transmission System for Portable-Telephone Battery Chargers, " IEEE Transactions on Industrial Electronics, vol. 50, no. 3, pp. 520-527, June. 2003.
[7] M. Dockhorn, D. Kurschner, and R. Mecke, "Contactless Power Transmission with New Secondary Converter Topology, " in Power Electronics and Motion Control Conference (EP-EPMC), Poznan, 2008, pp. 1734-1739.
[8] K. W. Klontz, D. M. Divan, and D. W. Novothy, "An Actively Cooled 120-kW Coaxial Winding Transformer for Fast Charging Electric Vehicles, " IEEE Transactions on Industrial Electronics, vol. 31, no.6, pp. 1257-1263, Nov/Dec. 1995.
[9] L. L. Hao, H. Aiguo, and G. A. Covic, "Development of a Discrete Energy Injection Inverter for Contactless Power Transfer, " in IEEE Conference on Industrial Electronics and Applications (ICIEA), Singapore, 2008, pp. 1757-1761.
[10] K. W. Klontz, D. M. Divan, D. W. Novothy, and R. D. Lonrenz, "Contactless Power Delivery System for Mining Applications, " IEEE Transactions on Industrial Electronics, vol. 31, no. 1, pp. 27-35, Jan/Feb. 1995.
[11] B. J. Heers, D. M. Divan, D. W. Novothy, and R. D. Lonrenz, "Contactless Underwater Power Delivery, " in Power Electronics Specialists Conference (PESC), Taipei, 1994, pp. 418-423.
[12] K. W. E. Cheng and Y. Lu, "Development of a Contactless Power Converter, " in IEEE International Conference on Industrial Technology (ICIT), 2002, pp. 786-791.
[13] R. L. Lin and Z. Y. Huang, "Self-oscillation Flyback Converter with Lossless Snubber for Contactless Power Supply Application, " in IEEE Energy Conversion Congress and Exposition (ECCE), Atlanta, 2010, pp. 549-554.
[14] R. L. Lin and Y. H. Huang, "Forward-flyback Converter with Snubber feedback Network for Contactless Power Supply Application, " in IEEE Energy Conversion Congress and Exposition (ECCE), Atlanta, 2010, pp. 1422-1427.
[15] S. Aldhaher, P. C. K. Luk, K. E. Khamlichi Drissi, and J. F. Whidborne, "High-input-voltage High-frequency Class E Rectifiers for Resonant Inductive Links, " IEEE Transactions on Power Electronics, vol. 30, no. 1, pp. 1328-1335, Mar. 2015.
[16] H. Hao, G. A. Covic, and J. T. Boys, "A Parallel Topology for Inductive Power Transfer Power Supplies, " IEEE Transactions on Power Electronics, vol. 29, no. 3, pp. 1140-1151, Mar. 2014.
[17] C. S. Wang, O. H. Stielau, and G. A. Covic, "Design Considerations for a Contactless Electric Vehicle Battery Charger, " IEEE Transactions on Industrial Electronics, vol. 52, no. 5, pp. 1308-1314, Oct. 2005.
[18] J. L. Villa, J. Sallan, J. F. S. Osorio, A. Lilombart, "High-misalignment Tolerant Compensation Topology for ICPT System, " IEEE Transactions on Industrial Electronics, vol. 59, no. 2, pp. 945-951, Feb. 2012.
[19] C. S. Tang, Y. Sun, T. G. Su, and S, K. Nguand, "Determining Multiple Steady-state ZCS Operating Points of a Switch-mode Contactless Power Transfer System, " IEEE Transactions on Power Electronics, vol. 24, no. 2, pp. 416-425, Feb. 2009.
[20] U. K. Madawala and D. J. Thrimawithana, "Current Sourced Bidirectional Inductive Power Transfer System, " IET Power Electronics, vol. 4, no. 4, pp.471-480, Apr. 2011.
[21] Z. Pantic, S. Bai, and S. Lukic, "ZCS LCC-Compensated Resonant Inverter for Inductive-power-transfer Application, " IEEE Transactions on Industrial Electronics, vol. 58, no. 8, pp. 3500-3510, Aug. 2011.
[22] J. R. Sibue, G. Kwimang, J. P. Ferrieux, and G. Meunier, "A Global Study of a Contactless Energy Transfer System: Analytical Design Virtual Prototyping and Experimental Validation, " IEEE Transactions on Power Electronics, vol. 28, no. 10, pp. 4690-4699, Oct. 2013.
[23] W. X. Zhong, C. Zhang, X. Liu, and S. Y. R. Hui, "A Methodology for Making a Three-coil Wireless Power Transfer System more Energy Efficient than a Two-coil Counterpart for Extended Transfer Distance, " IEEE Transactions on Power Electronics, vol. 30, no. 2, pp. 933-942, Feb. 2015.
[24] G. A. Covic and J. T. Boys, "Modern Trends in Inductive Power Transfer for Transportation Application, " IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 1, no. 1, pp. 28-47, Mar. 2013.
[25] M. Budhia, G. A. Covic, and J. T. Boys, "Design and Optimization of Circular Magnetic Structures for Lumped Inductive Power Transfer System, " IEEE Transactions on Power Electronics, vol. 26, no. 11, pp. 3096-3108, Nov. 2011.
[26] M. Budhia, J. T. Boys, G. A. Covic, and C. Y. Hung, "Development of a Single-sided Magnetic Coupler for Electric Vehicle IPT Charging Systems, " IEEE Transactions on Industrial Electronics, vol. 60, no. 1, pp. 318-328, Jan. 2013.
[27] W. X. Zhong, X. Liu, and S. Y. R. Hui, "A Novel Single-Layer Winding Array and Receiver Coil Structure for Contactless Battery Charging Systems With Free-Positioning and Localized Charging Features, " IEEE Transactions on Industrial Electronics, vol. 58, no. 9, pp. 4136-414, Sep. 2011.
[28] X. Liu, S. Y. R. Hui, "Simulation Study and Experiment Verification of a Universal Contactless Battery Charging Platform with Localized Charging Features, " IEEE Transactions on Power Electronics, vol. 22, no. 6, pp. 2202-2210, Nov. 2007.
[29] X. Liu, "Qi Standard Wireless Power Transfer Technology Development Toward Spatial Freedom, "IEEE Circuit and System Magazine, vol. 15, pp. 32-39, May. 2015.
[30] R. Tseng, B. V. Novak, S. Shevde, and K. A. Grajski, "Introduction to the Alliance for Wireless Power Loosely-Coupled Wireless Power Transfer System Specification Version 1.0, " Wireless Power Transfer (WPT), Perugia, 2013, pp. 79-83.
[31] X. Liu, D. Niyato, P. Wang, D. I. Kim, and Z. Han, "Wireless Charger Networking for Mobile Devices: Fundamentals, Standards, and Applications, " IEEE Wireless Communications, vol. 22, no. 2, pp. 126-135, Arp. 2015.
[32] A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, "Wireless Power Transfer via Strongly Coupled Magnetic Resonances, " Science, vol. 317, no. 5834, pp. 83-86, June. 2007.
[33] L. Xiao, P. Wang, D. Niyato, and E. Hossain, "Dynamic Spectrum Access in Cognitive Radio Network with RF Energy Harvesting, " IEEE Wireless Communications, vol. 21, no. 3, pp. 102-110, June. 2014.
[34] Wireless Power Consortium (WPC), "System Description Wireless Power Transfer, " vol. 1.
[35] Alliance for Wireless Power (A4WP), "A4WP Wireless Power Transfer System Baseline System Specifications (BSS), " vol. 1.2.1.
[36] S. C. Tang, S. Y. R. Hui, and H. Chung, "Coreless Planar Printed- Circuit Board (PCB) Transformers - A Fundamental Concept for Signal and Energy Transfer, " IEEE Transactions on Power Electronics, vol. 15, no. 5, pp. 931-941, Sep. 2000.
[37] S. Y. R. Hui and W. C. Ho, "A new generation of universal contactless
battery charging platform for portable consumer electronic equipment, " IEEE Transactions on Power Electronics, vol. 20, no. 3, pp. 620-627, May. 2005.
[38] C. T. Pan, P. Y. Chen, C. R. Lee, and W. T. Tsai, "A Nearly Zero Output Current Ripple DC Converter for Fully Digital Dimmable LED Drivers, " 12th Taiwan Power Electronics Conference, Tainan, 2013.
[39] C. T. Pan, P. Y. Chen, C. R. Lee, Y. H. Lee, and W. T. Tsai, " Novel Single Stage Passive Power Factor Correction Circuit for LED Street Driver, " 11th Taiwan Power Electronics Conference, Hsinchu, 2012.
[40] Microchip Technology Inc., "PIC16F/LF1825/1829 Datasheet, " Available at: http://www.microchip.com.
[41] D. Gislason, "ZigBee Wireless Networking, " Newnes Co., 2008.
[42] Daintree Networks Inc., "Getting Started with ZigBee and IEEE 802.15.4," 2004.
[43] Digi International Inc., "XBee/XBee-PRO ZB OEM RF Module, " 2008.
[44] J. Y. Lu and X. B. Wu, "A Novel Multiple Modes PWM Controller for LEDs, " in IEEE International Symposium on Circuits and System (ISCAS), Taipei, 2009, pp. 1767-1770.
[45] P. Narra and D. S. Zinger, "An Effective LED Dimming Approach, " in Annual Conference of IEEE Industry Applications (IAS), 2004, pp. 2232-2238.
[46] 翁思榮,TRIAC 調光控制電路之白光LED 燈驅動電路,國立中山大學電機工程學系碩士論文,2012 年。
[47] 曾百由,「微處理器原理與應用C 語言與PIC18 微控制器」,五南圖書出版公司,2006 年
[48] Cree Inc., "Direct Attach DA3547 LEDs, " 2010.

無法下載圖示 全文公開日期 2021/07/29 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 2031/07/29 (國家圖書館:臺灣博碩士論文系統)
QR CODE