簡易檢索 / 詳目顯示

研究生: 胡毓杰
Yuh-jye Hu
論文名稱: 利用軟模板與奈米鐵顆粒分別製備SiO2中空球與Fe/SiO2磁性複合中空球
Syntheses of SiO2 and magnetic Fe/SiO2 hollow spheres with soft template and Fe nanoparticle
指導教授: 郭東昊
Dong-hau Kuo
口試委員: 曾靖孋
none
氏原真樹
Masaki Ujihara
今榮東洋子
Toyoko Imae
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 105
中文關鍵詞: 中空球多孔中空球磁性複合中空球
外文關鍵詞: Hollow sphere, porous hollow sphere, magnetic hybrid hollow sphere
相關次數: 點閱:222下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本實驗大致可分為三部份,第一部分是聚丙烯酸為模板,加入TEOS,製備二氧化矽中空球。第二部份是利用聚丙烯酸與孔洞生成劑為模板,加入TEOS,製備多孔二氧化矽中空球。第三部份則是以二氧化矽中空球為模板,加入鐵、分散劑、阻隔劑,製備磁性複合中空球。在此實驗中,分別討論改變聚丙烯酸的含量,來控制中空球的粒徑;改變孔洞生成劑的含量來控制中空球殼層的孔隙度;改變分散劑、阻隔劑與保護層的含量,來控制複合中空球的表面型態與結構。
在製備中空球的部份,分別使用0.05 g、0.065 g與0.08 g的聚丙烯酸所形成之模板,製備出的二氧化矽中空球之粒徑分別為150±50 nm、220±50 nm與300±50 nm。
在製備多孔中空球部份,分別使用0 ml、3.12 ml與8 ml的孔洞生成劑與聚丙烯酸為模板,製備出多孔二氧化矽中空球。由實驗結果可發現,以孔洞生成劑生成模板,所製備的中空球,並不會使其表面積明顯的增加,但平均孔徑會比沒有加入正十二烷之中空球由10 nm增大到20 nm。
在製備磁性複合中空球部份,主要是探討分散劑、阻隔劑與TEOS保護劑對於磁性複合中空球之表面與微結構的影響。在製程方面,大致可分為兩部份,第一部所得的產物,表面毛茸茸且表面積大;第二部份所製備出磁性複合中空球,表面較為平整,由此可說明,利用第二種方法所得的磁性複合中空球,其粒徑較小,因此表面較平整。並可以藉由加入分散劑,將其結構轉變為覆盆梅結構,因此可以利用一些添加劑來改變複合中空球的表面形態。


This study is divided into three parts. The first part is to use poly (acrylic acid) as a template, and then to add TEOS to prepare a SiO2 hollow sphere. The second part is to use poly(acrylic acid) and pore former as a template, and then to add TEOS to prepare a porous SiO2 hollow sphere. The third part is to use SiO2 hollow sphere as a template, and then add iron, a dispersant, and a blocking agent to prepare a magnetic hybrid hollow sphere. In this study, we investigate the effects of the poly(acrylic acid) content on the size of hollow sphere, the pore former content on the porosity of hollow sphere, and the contents of dispersant, blocking agent, and TEOS on the surface morphology and the structure of hybrid hollow spheres.
0.05, 0.065 and 0.08g of poly(acrylic acid) were used as a template to prepare SiO2 hollow spheres of 150±50 nm, 220±50 nm and 300±50 nm, respectively.
0, 3.12 and 8 ml of pore former and 0.8g of poly(acrylic acid) were used to prepare porous SiO2 hollow sphere. From the experimental results, it was found that the specific surface area of the porous hollow spheres did not increase with the addition of pore former but its pore size increased from 10 nm to 20 nm.
The effects of dispersant, blocking agent, and protective agent on the surface smoothness and the microstructure of magnetic hybrid hollow spheres had been discussed. For preparing the functional hollow spheres, it can be divided into two parts. In the first part, Fe particles were deposited on and into the hollow sphere. This process produced the magnetic hollow spheres with a rough surface and a high surface area. In the second part, Fe particles were also deposited on and into the hollow sphere. Through this approach, the magnetic hollow spheres had a smooth surface and were free of the un-wanted Fe aggregates attached to the hollow spheres. If surfactant was added into this emulsion solution, magnetic hybrid hollow spheres with a raspberry structure were obtained. With chemical modification, the morphology of the magnetic Fe nanoparticles can be adjusted.

第一章 緒論 1 1-1 有機-無機混成材料之簡介 1 1-2有機-無機奈米材料的製作 2 1-3有機-無機混成奈米材料之特性 3 1-4 奈米材料的效應 4 1-5 中孔洞材料簡介 6 1-6 中空球之簡介 7 1-7磁性奈米粒子的簡介 7 1-7-1 磁矩(Magnetic Moment) 8 1-7-2 磁性奈米粒子的磁滯現象 12 第二章 基礎理論與文獻回顧 15 2-1 二氧化矽的溶膠-凝膠(Sol-Gel)反應 15 2-2 中孔洞的形成機制 18 2-3中空球的合成方法 20 2-3-1 硬模板法 20 2-3-2 軟模板法 39 2-3-3 犧牲模板法 42 2-3-4 無模板法 51 2-4 奈米鐵粒子的合成方法 52 2-4-1 化學共沉澱法 53 第三章 研究動機與實驗方法 57 3-1 研究動機 57 3-2實驗藥品 57 3-3實驗設備 58 3-3-1水幫浦 58 3-3-2 超音波洗淨機 58 3-3-3 減壓濃縮機 59 3-3-4 超音波震碎機 59 3-3-5 高溫爐 59 3-3-6 離心機 59 3-4 實驗流程 59 3-4-1 SiO2中空球之合成 60 3-4-2 多孔中空球之合成 62 3-4-3 磁性二氧化矽中空球之合成 64 3-5 儀器分析介紹 69 3-5-1 表面分析 69 3-5-2 結構分析 70 3-5-3 熱分析 70 第四章 結果與討論 71 4-1 不同PAA含量下合成之中空球 71 4-2 不同十二烷含量下合成之多孔中空球 75 4-3 磁性複合中空球 78 4-3-1 無添加阻隔劑與保護層所製備的Fe/SiO2複合中空球 80 4-3-2使用AOT為阻隔劑所製備的Fe/SiO2複合中空球 81 4-3-3使用AOT為阻隔劑,TEOS為保護層所製備的Fe/SiO2複合中空球 83 4-3-4使用AOT與PVP為阻隔劑,製備Fe/SiO2複合中空球 86 4-3-5使用AOT與PVP為阻隔劑,TEOS為保護層,製備Fe/SiO2複合中空球 88 4-3-6 使用正己烷作為油相,NaBH4水溶液為水相,製備Fe/SiO2複合中空球 90 4-3-7使用正十二烷作為油相,乙醇溶液為水相,製備Fe/SiO2複合中空球 93 4-3-8使用正十二烷作為油相,乙醇溶液為水相,AOT為分散劑,製備Fe/SiO2複合中空球 96 第五章 結論 101 參考文獻 103

[1]馬震基編著,“奈米材料科技原理與應用”全華科技出版社,民92。

[2]盧希鵬、馬震基,“奈米材料技術地圖”,國科會科學技術資料中心,(2003)。

[3]尹邦躍、張勁燕著,“奈米時代”,五南圖書股份有限公司,(2002)。

[4]林建中編著“高分子材料性質與應用”,高立圖書公司,臺北。

[5]盧永坤編著,“奈米科技概論”,滄海書局。

[6]張莉琳,國立清華大學化學學系碩士論文,(2009)。

[7]沈姿誼,國立中央大學化學研究所碩士論文,(2006)。

[8]Xie Fei, Qi Meizhou, Li Wenjiang, Wang Kai, Yu Zhenyun, Liu Bin, PROGRESS IN CHEMISTRY, Vol.23 NO.12 DEC., 2011.

[9]生醫奈米科技教學資源中心主編,“生醫奈米技術”,(2007)。

[10]陳貞志,國立清華大學化學工程學系博士論文,(2007)。

[11]Huiqing Wu, Beibei Tang, and Peiyi Wu, J. Phys. Chem. C 2012, 116, 2246–2252.

[12]Xiaofeng Wu, Yajun Tian, Yanbin Cui, Lianqi Wei, Qi Wang, and Yunfa Chen, J. Phys. Chem. C 2007, 111, 9704-9708.

[13]Yong Wan and Shu-Hong Yu, J. Phys. Chem. C 2008, 112, 3641-3647.

[14]Dechao Niu, Zhi Ma, Yongsheng Li, and Jianlin Shi, J. AM. CHEM. SOC. 2010, 132, 15144–15147.

[15]Chunlei Wang, Juntao Yan, Xuejun Cui, Hongyan Wang, Journal of Colloid and Interface Science. 2011, 354, 94–99.

[16]Masato Nakamura, Kiyofumi Katagiri, Kunihito Koumoto, Journal of Colloid and Interface Science 2010, 341, 64–68.

[17]Xin-Hao Li, Dong-Hui Zhang, and Jie-Sheng Chen, J. AM. CHEM. SOC. 2006, 128, 8382-8383.

[18]Frank Caruso, Marina Spasova, Andrei Susha, Michael Giersig, and Rachel A. Caruso, Chem. Mater. 2001, 13, 109-116.

[19]Jia Liu, Yonghui Deng, Chong Liu, Zhenkun Sun, Dongyuan Zhao, Journal of Colloid and Interface Science. 2009, 333, 329-334.

[20]Fangyingkai Wang, Yulin Tang, Bingbo Zhang, Bingdi Chen, Yilong Wang, Journal of Colloid and Interface Science 2012, 386, 129–134.

[21]Jian-Feng Chen, Hao-Min Ding, Jie-Xin Wang, Lei Shao, J.-F. Chen et al. / Biomaterials 2004, 25, 723–727.

[22]Soodabe Gharibe, Shahrara Afshar and Leila Vafayi, Afr. J. Pharm. Pharmacol 2011, Vol. 5(20), 2265-2271.

[23]Yufang Zhu, Emanuel Kockrick, Toshiyuki Ikoma, Nobutaka Hanagata, and Stefan Kaskel, Chem. Mater. 2009, 21, 2547–2553.

[24]Jiaguo Yu, Xiaoxiao Yu, Baibiao Huang, Xiaoyang Zhang, and Ying Dai, Crystal Growth & Design, Vol. 9, No. 3, 2009, 1474-1480.

[25]包榮宏,南台科技大學電機工程研究所碩士學位論文,(2006)。

[26]洪若瑜主編,“磁性納米粒和磁性流體製備與應用”,化學工業出版社。

[27]Jaeyun Kim, Hoe Suk Kim, Nohyun Lee, Taeho Kim, Hyoungsu Kim, Taekyung Yu, In Chan Song, Woo Kyung Moon, and Taeghwan Hyeon, Angew. Chem. Int. Ed. 2008, 47, 8438 –8441.

[28]Shou-hu Xuan, Siu-Fung Lee, Janet Ting-Fong Lau, Xiaoming Zhu, Yi-Xiang J. Wang, Feng Wang, Josie M. Y. Lai, Kathy W. Y. Sham, Pui-Chi Lo, Jimmy C. Yu, Christopher H. K. Cheng, and Ken Cham-Fai Leung, ACS Appl. Mater. Interfaces 2012, 4, 2033−2040.

[29]Chun-Rong Lin, I-Han Chen, Cheng-Chien Wang, Mei-Li Chen, C.-R. Lin et al. / Acta Materialia 2011, 59, 6710–6716.

QR CODE