簡易檢索 / 詳目顯示

研究生: 程佳炫
Chia-hsuan Cheng
論文名稱: 加熱爐內矽鋼胚破壞機制之探討
The investigation on the fracture of silicon steel in the reheating furnace
指導教授: 黃育熙
Yu-Hsi Huang
口試委員: 吳立文
Li-Wen Wu
趙振綱
Ching-Kong Chao
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 68
中文關鍵詞: 矽鋼最適溫控策略溫度梯度應變能密度矽鋼高溫定溫拉伸實驗
外文關鍵詞: ultra-thin electromagnetic steel sheet, optimal heating rates
相關次數: 點閱:199下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究主要針對矽鋼胚在軋延前的再加熱製程進行破壞機制的探討,以及材料特性與熱傳參數的研究分析。預測及判斷鋼胚在加熱爐中升溫溫度變化時,加熱速度影響鋼胚內外溫度差以及材料特性的變化所引起的破壞機制,避免鋼胚破裂的發生造成嚴重的產能損失;本研究以有限元素法軟體模擬分析建置矽鋼胚發生破壞與否的理論預測模型,並在未來進行實驗驗證。本研究的破壞預測擬藉由應變能密度預測鋼胚破壞時累積的韌性強度,以建立理論數值分析模型。利用有限元素法分析鋼胚受到溫度與時間變化下的應變能密度特性,由鋼胚受到溫度梯度分佈時發生斷裂的臨界應變能密度建立其理論模型,利用矽鋼加熱時的溫度曲線進行溫度與時間的變化對鋼胚發生熱裂破壞的預估。在鋼胚加熱破壞理論模型研究,針對鋼胚的升溫由分析中可獲得直接由表面經熱傳導至內部的溫度梯度而造成溫度變化的破壞機制,並可詳細的在未來以實驗方式驗證理論模型,透過本研究得到鋼胚的最適溫控模式。經由本研究,除了可獲知是否可藉由縮短矽鋼的加熱時間以提升產能、降低能源成本之外,亦適用其他鋼胚鋼種之理論模型,對於各式鋼材的生產製造可得到豐富且有效的資訊。然而,本研究之鋼胚破壞機制的預測模型乃是針對理想之鋼胚表面溫度進行最適溫控技術的假設之下所建立,但實際的加熱爐設備是否可達目標溫度則受到許多熱傳參數的影響,若可使升溫策略達到最適溫控模式,將可提高矽鋼片之產量,以及實現節能減廢的要求。


Heating processes are commonly operated during manufacturing ultra-thin electromagnetic steel sheet. To increase the production of ultra-thin electromagnetic steel sheet, the heating rates need to increase. However, the improper increases in heating rates may induce fracture on ultra-thin electromagnetic steel sheet. Therefore, the proper heating rates are the important factors of manufacturing ultra-thin electromagnetic steel sheet. The effects of heating processes on the fracture mechanism of ultra-thin electromagnetic steel sheet will be numerically studied in this research. The strain energy density criterion will be used to predict the fracture mechanism in the study. To predict fracture of ultra-thin electromagnetic steel in heating , the critical strain energy density is applied to determine the optimal heating rates. According to the investigation of the optimal heating rates from numerical study, an experimental setup will be designed and developed by means of the similarity theory. Hence, a heating furnace system will be built to simulate the heat process of ultra-thin electromagnetic steel sheet. The effect of various heating rates on the fracture of ultra-thin electromagnetic steel sheet will be verified by experimental method. Through this research, in addition to be informed whether ultra-thin electromagnetic steel sheet by shortening the heating time to improve productivity, reduce energy costs, the theoretical model also applies to other kinds of steel for manufacturing various types of steel available and effective information. However, this study forecasting model destruction mechanism but ideal for ultra-thin electromagnetic steel sheet surface temperature under the assumption that the establishment of optimum temperature control technology, but the furnace device which is reachable target temperature is subject to a number of heat transfer parameters impact. Therefore, the reliable heating processes of the heating furnaces will improve the production of electromagnetic steel sheet and achieve energy saving requirements.

目錄 Abstract III 誌謝 IV 目錄 V 圖目錄 VII 表目錄 X 附錄 XI 第1章 緒論 1 1.1. 研究動機 1 1.2. 研究目的與方法 1 1.2.1 鋼鐵材料之韌性強度 2 1.2.2 應變能密度與破壞預測 3 1.2.3 有限元素法與熱應力分析 4 1.2.4 鋼胚熱裂破壞機制之建立 6 1.3. 文獻回顧 7 1.4. 論文架構 9 第2章 矽鋼再加熱製程簡介與基本原理 11 2.1. 再加熱製程簡介 11 2.2. 應變能密度理論 17 2.3. 熱傳導與熱擴散方程式 18 第3章 有限元素法分析基礎理論 19 3.1. 有限元素法之基礎理論 19 3.1.1. 有限元素法分析流程 19 3.1.2. 有限元素法之基礎計算 21 3.1.3. 顯式與隱式計算方法 23 第4章 矽鋼再加熱製程之有限元素法模擬分析 27 4.1 背景環境分析流程 27 4.1.1. 矽鋼之有限元素模型建立 28 4.1.2. 厚度方向之網格量的選取 39 4.2 高、低矽鋼之臨界應變能密度取得 40 4.2.1高溫下之拉伸實驗 40 4.3 低矽鋼之實際最快再加熱製程時間 42 4.4 縮短加熱時間之升溫策略趨勢 43 4.5 矽鋼胚降溫策略趨勢 44 第5章 矽鋼再加熱製程破壞機制分析結果 48 5.1. 矽鋼再加熱製程之分析結果 48 5.2. 高矽鋼縮短時間之再加熱製程分析結果 52 5.3. 矽鋼胚降溫策略之結果 55 5.4. 矽鋼再加熱製程有限元素模擬分析空間分布結果 57 第6章 結論與未來工作 63 6.1 結論 63 6.2 未來工作 64 參考文獻 66 附錄A 69 附錄B 71

[1] 陳海耿, 楊澤寬, 張衛軍, “太鋼一軋廠加熱爐數學模型優化控制”, 冶金能源, Vol. 14, No.4, pp. 39, (1995).
[2] 沈丙振, 周進, 韓志强, “熱軋步進式加熱爐內鋼胚溫度場數值模擬”, 冶金能源, Vol. 21, No. 4, pp. 24, (2002).
[3] 青格勒, 程素森, “步進樑式加熱爐內的板胚溫度場數值模擬”, 北京科技大學學報, Vol. 26, No. 2, pp. 164, (2004).
[4] 劉向軍, 趙燕, “步進式加熱爐內鋼胚加熱過程的模擬研究”, Vol. 40, No. 7, pp. 76, (2005).
[5] 朱光俊, 李昂, “連鑄板胚直接熱裝加熱數學模型的研究”, 熱能工程, Vol. 3, pp. 8, 1999.
[6] 李北民, 蔡等, “鋼胚加熱仿真在實際系統中的應用”, 瀋陽電力高等專科學校學報, Vol. 3, No. 4, pp. 22, (2001).
[7] 金仁杰, 陳海耿, “連續加熱爐數學模型控制中的爐溫決策方法”, 鋼鐵, Vol. 30, No. 1, pp. 67, (1995).
[8] 劉新忠, 韓靜濤, “步進樑式加熱爐內鋼胚溫度場數值模擬”, 塑性工程學報, Vol. 15, No. 3, pp. 199, (2008).
[9] 吳小芳, 李少遠, “基於前饋補償的加熱爐爐溫設定值優化”, 控制工程, Vol. 15, No. 1, pp. 35, (2008).
[10] 曹萍, 張榮明, “連續加熱爐待軋策略研究,材料與冶金學報”, Vol. 7, No. 3, pp. 229, (2008).
[11] 陳明宏, 林冠儒, 楊清潮, 黃凱亮, “SK85鋼胚熱軋斷裂成因與機械燒除研究”,鑛冶, Vol. 52, No. 3, pp.107-112, (2008).
[12] 鄭恆星, 許元良, 廖啟民, 黃大松, “熱軋加熱爐爐氛低氧控制技術開發”, 鑛冶, Vol. 55, No. 1, pp.35-44, (2011).
[13] 李肇升, “2006鋼鐵年鑑-平板類鋼板片篇”, 經濟部技術處產業技術知識服務(ITIS)計畫, 16頁, (2006).
[14] 趙振綱, 孫銘宏,張祖錕, “燃料丸與護套機械作用–氫化鋯效應”, 行政院原子能委員會委託研究計畫研究報告, 25頁, (2011).
[15] 莊有清, 邱耀正, “鋼材在高溫環境下之行為探討”, 2頁,(2004).
[16] H.S. Ko, J.S. Kim, T.W. Yoon, et al., “Modeling and predictive control of a reheating furnace”, American Control Conference, (2000).
[17] V. Ditzhuijzen, D. Staalman, A. Koom, et al., “Identification and model predictive control of a slab reheating furnace”, IEEE International Conference on Control Applications, (2002).
[18] Z.J. Wang, Q.D. Wu, T.Y. Chai, “Optimal setting control for complicated industrial processes and its application study”, Control Engineering Practice, Vol. 12, No. 1, pp. 65-74, (2004).
[19] B. Lede, “Control system for fuel optimization of reheating furnace”, Scandinavian Journal of Metallurgy, Vol. 15, pp. 16-24, (1986).
[20] D. Capenter, “Temperature control and optimization of a reheating furnace using a distributed control system”, Iron and Steel Engineer, Vol. 64, No. 8, pp. 44-49, (1987).
[21] M. Prieto, F. J. Fernandez, J. L. Rendueles, “Development of Stepwise Thermal Model for Annealing Line Heating Furnace”, Ironmaking and Steelmaking, Vol. 32, No. 2, pp. 165-170, (2005).
[22] C.C. Tseng and C.K. Chao, “Fuel rod load follow analysis,” Journal of Nuclear Materials, Vol. 228, No. 3, pp. 284–289, (1996).
[23] C.K. Chao, J.Q. Chen, K.C. Yang, and C.C. Tseng, “Creep crack growth on spent fuel zircaloy cladding in interim storage,” Theoretical and Applied Fracture Mechanics, Vol. 47, No. 1, pp. 26–34, (2007).
[24] C.K. Chao, K.C. Yang, and C.C. Tseng, “Rupture of spent fuel Zircaloy cladding in dry storage due to delayed hydride cracking,” Nuclear Engineering and Design, Vol. 238, No. 1, pp. 124–129, (2008).
[25] C. K. Chao, K. C. Yang, C. K. Chen, and C. C. Tseng, “Effect of hydride embrittlement on creep life of spent fuel cladding,” Journal of the Chinese Institute of Engineers, Vol. 34, No. 1, pp. 107-121, (2011).
[26] G.C. Sih , B. Macdonald ,“Fracture Mechanics Applied To Engineering Problems-Strain Energy Density Fracture Criterion”, Engineering Fracture Mechanics . Vol.6 . pp.361-386. Pergamon Press. Printed in Great Britain, (1974).
[27] E. Beltrami, AslleCondizioni di Resistenzadeicorpi Elastic, Rendiconto del RealeIstituto Lombardo, Ser. II, Tomo XVIII, (1985).
[28] Hullquist J. O., “LS-DYNA Theory Manual”,Livermore,Version 971, SoftwareTechnology Cooperation Livermore, CA , (1998).
[29] F.M. Xue , F.G. Li , J. Li , M. He ,“Strain energy density method for estimating fracture toughness from indentation test of 0Cr12Mn5Ni4Mo3Al steel with Berkovich indenter” Theoretical and Applied Fracture Mechanics 61 (2012) 66–72
[30] Andreas Loizou , Hong Sheng Qi , Andrew J. Day “A Fundamental Study on the Heat Partition Ratio of Vehicle Disk Brakes” School of Engineering, Design and Technology, University of Bradford , Bradford BD7 1DP, UK, 121302-8 / Vol. 135,(2013).
[31] Instron , 2736 Series Man. Wedge Action Grips: High Temp,
[32] Instron ,2736 Series Manual Wedge Action Grips High Temperature (2736-015)
[33] Instron ,5900 Series Brochure
[34] Instron ,Guide to High Temperature Tensile Testing
[35] Instron ,W-E440 Series High Temperature Extensometer
[36] 中鋼公司,鋼品製造流程,http://www.csc.com.tw/csc/pd/prs.htm
[37] 中鋼公司,扁鋼胚連續鑄造機, http://www.csc.com.tw/csc/pd/prs05.htm
[38] 中鋼產學大聯盟計畫書,極薄電磁鋼片軋延與退火技術

QR CODE