簡易檢索 / 詳目顯示

研究生: 蔡宗佑
Tsung-Yu Tsai
論文名稱: 鐵鈦載氧體之還原動力分析及其應用於流體化床式化學迴圈程序之研究
Reduction Kinetics and Application to a Fluidized Bed Reactor for Fe-Ti Based Oxygen Carriers
指導教授: 顧洋
Young Ku
口試委員: 蔣本基
Pen-Chi Chiang
曾迪華
Dyi-Hwa Tseng
曾堯宣
Yao-Hsuan Tseng
李豪業
Hao-Yeh Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 168
中文關鍵詞: 化學迴圈程序載氧體還原動力三維擴散反應模型冷態模型流體化床反應器
外文關鍵詞: Chemical looping process, Oxygen carrier, Reduction kinetics, 3-Dimensional diffusion model, Cold flow model, Fluidized bed reactor
相關次數: 點閱:204下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究主要針對鐵鈦複合載氧體之還原動力及其應用於流體化床式反應器進行研究。研究中分別以氫氣及一氧化碳作為燃料氣體於熱重分析儀中還原載氧體並探討不同氧化鐵及二氧化鈦比例與不同載氧體粒徑對於動力學參數之影響。利用熱重分析所得之實驗數據搭配反應機制模型,結果顯示三維擴散模型適用於鐵鈦複合載氧體之還原反應;另外,不論載氧體在氫氣或一氧化碳氣氛下還原,粒徑對於反應速率常數及表觀活化能皆無明顯的影響,但是隨著載氧體之氧化鐵含量增加,反應速率常數會隨之上升,表觀活化能則有下降的趨勢,其中又以在一氧化碳氣氛反應下表觀活化能變化幅度較為明顯,而製備完成之載氧體有二氧化鈦成分存在時有助於降低其表觀活化能。
本研究亦探討鐵鈦複合載氧體於交聯式流體化床冷態模型之氣-固流動現象,研究中調整空氣反應器、燃料反應器及密封迴路之氣體流量,分析各部位壓力分佈,找出最佳操作參數。此外,測試密封迴路之隔絕效果與氣體分配至空氣及燃料反應器之比例,進而計算出固體循環量。其實驗結果顯示,最佳氣體操作流量於空氣反應器、燃料反應器及密封迴路分別為 30 L/min、10 L/min及18 L/min,而密封迴路有良好的隔絕效果,其氣體分配比為空氣反應器51.5%,燃料反應器48.5%。在上述條件下固體循環量為90 g/min,不過實驗過程中發現存在架橋問題,故本研究最後針對載氧體流動能力進行測試,結果顯示氧化鐵與二氧化鈦比例為2比1時,具有較好的流動能力。


This study focused on reduction kinetics and application to a fluidized bed reactor for Fe-Ti based oxygen carriers. The reduction kinetics of oxygen carriers were evaluated by the solid-state reaction mechanism models and experiments were carried out in thermogravimetric analysis (TGA), using CO and H2 as reducing gases. According to results, 3-Dimensional diffusion model is a suitable model for describing the reaction behavior of oxygen carriers. Moreover, rate constants and apparent activation energies are independent of particle sizes but with increasing contents of Fe2O3 resulted in increasing rate constants and decreasing apparent activation energies when oxygen carriers reduced by both CO and H2. However, prepared oxygen carriers with TiO2 content could promote to decrease apparent activation energies.
Furthermore, cold flow model for chemical looping process was performed in a fluidized bed reactor system. The results show that optimal operating gas volume flows of fuel reactor, air reactor, and loop seal is 10 L/min, 30 L/min and 18 L/min, respectively. Moreover, loop seal can avoid the gas mixing between air reactor and fuel reactor effectively. Then, there are 51.5% gas volume flows of loop seal introduced to air reactor and 48.5% gas volume flows of loop seal introduced to fuel reactor. Finally, 90 g/min of solid circulation rate could be obtained.
In the cold flow model experiments, the arching problem was observed. Therefore, the flowability of oxygen carriers was examined by Hausner ratio and results show that FT211-S0 has better flowability.

Chinese Abstract I English Abstract III Acknowledgement V Content VII List of Figures XI List of Tables XVII List of Symbols XIX Chapter 1 Introduction 1 1.1 Background 1 1.2 Objectives and Scope 3 Chapter 2 Literature and Review 5 2.1 Introduction of Chemical Looping Combustion (CLC) 5 2.2 Selection and Performance of Oxygen Carriers in CLC 8 2.2.1 Fe-Based Oxygen Carriers with Al2O3 as a Support Material 9 2.2.2 Fe-Based Oxygen Carriers with ZrO2 as a Support Material 10 2.2.3 Ilmenite Based of Oxygen Carriers 12 2.3 Reaction Kinetics of the Oxygen Carriers 16 2.3.1 General Equation for Solid-State Reactions 17 2.3.2 Solid-State Reaction Models 18 2.4 Combustion of Gaseous Fuel for CLC 24 Chapter 3 Experimental Apparatus and Procedures 27 3.1 Chemicals 27 3.2 Apparatus 28 3.3 Experimental Procedures 29 3.3.1 Experimental Framework 29 3.3.2 Preparation of Fe2O3/TiO2 Oxygen Carriers 32 3.3.3 TGA Analysis of Oxygen Carriers 34 3.3.4 Cold Flow Model Experiments on Fluidized Bed Reactor 36 3.3.5 Characterization Analysis 38 3.4 Data Evaluation 41 Chapter 4 Results and Discussion 45 4.1 Background Experiments 46 4.1.1 Reactivity Test of Composite Fe2O3/TiO2 46 4.1.2 Effect of External Resistance to Mass Transfer 49 4.1.3 Morphology of Oxygen Carriers 52 4.2 Reduction Kinetics Analysis of Oxygen Carriers under CO Atmosphere 54 4.2.1 Selection of Solid-State Kinetic Models 54 4.2.2 Effect of Oxygen Carriers in Various Particle Sizes 66 4.2.3 Effect of Oxygen Carriers in Various Fe2O3/TiO2 Mass Ratios 71 4.3 Reduction Kinetics Analysis of Oxygen Carriers under H2 Atmosphere 76 4.3.1 Selection of Solid-State Kinetic Models 76 4.3.2 Effect of Oxygen Carriers in Various Particle Sizes 88 4.3.3 Effect of Oxygen Carriers in Various Fe2O3/TiO2 Mass Ratios 93 4.4 Cold Flow Model Investigations of Interconnected Fluidized Bed Reactor for Chemical Looping Processes 98 4.4.1 System Pressure Profile 100 4.4.2 Solid Circulating Rate 105 4.4.3 Flow Properties of Fe2O3/TiO2 Oxygen Carriers 106 Chapter 5 Conclusions and Recommendations 109 Reference 113 Appendix 121

Abad, A., Adánez, J., Cuadrat, A., García-Labiano, F., Gayán, P. and De Diego, L.F., “Kinetics of Redox Reactions of Ilmenite for Chemical-looping Combustion,” Chem. Eng. Sci., Vol. 66, pp. 689-702 (2011).
Abad, A., Garcia-Labiano, F., de Diego, L.F., Gayan, P. and Adánez, J., “Reduction Kinetics of Cu-, Ni-, and Fe-based Oxygen Carriers using Syngas (CO+H2) for Chemical-Looping Combustion,” Energy Fuels, Vol. 21, pp. 1843-1853 (2007).
Abad, A., Mattisson, T., Lyngfelt, A. and Johansson, M., “The use of Iron Oxide as Oxygen Carrier in a Chemical-Looping Reactor,” Fuel, Vol. 86, pp. 1021-1035 (2007).
Adánez, J., Abad, A., Garcia-Labiano, F., Gayan, P. and de Diego, L.F., “Progress in Chemical-Looping Combustion and Reforming Technologies,” Prog. Energy Combust. Sci., Vol. 38, pp. 215-282 (2012).
Adánez, J., Cuadrat, A., Abad, A., Gayán, P., de Diego, L. F. and García-Labiano, F., “Ilmenite Activation during Consecutive Redox Cycles in Chemical Looping Combustion,” Energy Fuels, Vol. 24, pp.1402-1413 (2010).
Azis, M. M., Jerndal, E., Leion, H., Mattisson, T. and Lyngfelt, A., “On the Evaluation of Synthetic and Natural Ilmenite using Syngas as Fuel in Chemical-looping Combustion (CLC),” Chem. Eng. Res. Des., Vol. 88, pp. 1505-1514 (2010).
Berguerand, N., “Design and Operation of a 10 kWth Chemical-Looping Combustor for Solid Fuels,” (Doctor’s thesis), Chalmers University of Technology, Sweden (2009).
Brown, T. J., Wrighton, C. E., Raycraft, E. R., Shaw, R. A., Deady, E. A., Rippingale, J., Bide, T. and Idoine, N., “World Mineral Production 2009-13,” Nottingham: British Geological Survey (2015).
Cabello, A., Abad, A., García-Labiano, F., Gayán, P., de Diego, L.F. and Adánez, J., “Kinetic Determination of a Highly Reactive Impregnated Fe2O3/Al2O3 Oxygen Carrier for Use in Gas-Fueled Chemical Looping Combustion,” Chem. Eng. J., Vol. 258, pp. 265-280 (2014).
Cho, P., Mattisson, T. and Lyngfelt, A., “Comparison of Iron-, Nickel-, Copper- and Manganese-Based Oxygen Carriers for Chemical-Looping Combustion,” Fuel, Vol. 83, pp. 1215-1225 (2004).
Cotton, A., Patchigolla, K. and Oakey, J. E., “Hydrodynamic Characteristics of a Pilot-Scale Cold Model of a CO2 Capture Fluidised Bed Reactor,” Powder Technol., Vol. 235, pp. 1060-1069 (2013).
Cuadrat, A., Abad, A., Adánez, J., de Diego, L. F.., García-Labiano, F. and Gayán, P., “Behavior of Ilmenite as Oxygen Carrier in Chemical-Looping Combustion,” Fuel Process. Technol., Vol. 94, pp. 101-112 (2012).
Dang, J., Zhang, G. H. and Chou, K. C., “Kinetics and Mechanism of Hydrogen Reduction of Ilmenite Powders,” J. Alloys Compd., Vol. 619, pp. 443-451 (2015).
Fan, L.S., “Chemical Looping System for Fossil Energy Conversions,” John Wiley & Sons, Inc., New York U.S., pp. 106-107 (2010).
Fogler, H. S., “Elements of Chemical Reaction Engineering 4th Ed.,” Pearson Education, New Jersey, pp.779-780 (2006).
García-Labiano, F., Adánez, J., De Diego, L. F., Gayán, P. and Abad, A., “Effect of Pressure on the Behavior of Copper-, Iron-, and Nickel-Based Oxygen Carriers for Chemical-Looping Combustion,” Energy Fuels, Vol. 20, pp. 26-33 (2006).
Haider, A. and Levenspiel, O., “Drag Coefficient and Terminal Velocity of Spherical and Nonspherical Particles,” Powder Technol. Vol. 58, pp. 63-70 (1989).
He, F., Wang, H. and Dai, Y., “Application of Fe2O3/Al2O3 Composite Particles as Oxygen Carrier of Chemical Looping Combustion,” J. Nat. Gas Chem., Vol. 16, pp. 155-161 (2007).
Hua, X., Wang, W. and Wang, F., “Performance and Kinetics of Iron-Based Oxygen Carriers Reduced by Carbon Monoxide for Chemical Looping Combustion,” Front. Environ. Sci. Eng., (2015).
Johansson, M., Mattisson, T. and Lyngfelt, A., “Comparison of Oxygen Carriers for Chemical-Looping Combustion,” Therm. Sci., Vol. 10, pp. 93-107 (2006).
Kang, K. S., Kim, C. H., Bae, K. K., Cho, W. C., Jeong, S. U., Lee, Y. J. and Park, C. S., “Reduction and Oxidation Properties of Fe2O3/ZrO2 Oxygen Carrier for Hydrogen Production,” Chem. Eng. Res. Des., (2014).
Khawam, A. and Flanagan, D. R., “Basics and Applications of Solid-State Kinetics: A Pharmaceutical Perspective,” J. Pharm. Sci., Vol. 95, pp. 472-498 (2006).
Khawam, A. and Flanagan, D. R., “Solid-State Kinetic Models: Basics and Mathematical Fundamentals,” J. Phys. Chem. B, Vol. 110, pp. 17315-17328 (2006).
Koga, N. and Criado, J. M., “Kinetic Analyses of Solid-State Reactions with a Particle-Size Distribution,” J. Am. Ceram. Soc., Vol. 81, pp. 2901-2909 (1998).
Kolbitsch, P., Bolhar-Nordenkampf, J., Proll, T. and Hofbauer, H., “Operating Experience with Chemical Looping Combustion in a 120 kW Dual Circulating Fluidized Bed (DCFB) Unit,” Int. J. Greenhouse Gas Control, Vol. 4, pp. 180-185 (2010).
Ksepko, E., Sciazko, M. and Babinski, P., “Studies on the Redox Reaction Kinetics of Fe2O3–CuOAl2O3 and Fe2O3TiO2 Oxygen Carriers,” Appl. Energy, Vol. 115, pp. 374-383 (2014).
Kunii, D. and Levenspiel, O., “Fluidization Engineering,” Butterworth-Heinemann, Washington, pp. 71-72 (1991).
Leion, H., Lyngfelt, A., Johansson, M., Jerndal, E. and Mattisson, T., “The Use of Ilmenite as an Oxygen Carrier in Chemical-Looping Combustion,” Chem. Eng. Res. Des., Vol. 86, pp. 1017-1026 (2008).
Linderholm, C., Schmitz, M., Knutsson, P., Källén, M. and Lyngfelt, A., “Use of Low-Volatile Solid Fuels in a 100 kW Chemical-Looping Combustor,” Energy Fuels, Vol. 28, pp. 5942-5952 (2014).
Liu, W., Dennis, J. S. and Scott, S. A., “The Effect of Addition of ZrO2 to Fe2O3 for Hydrogen Production by Chemical Looping,” Ind. Eng. Chem. Res., Vol. 51, pp. 16597-16609 (2012).
Liu, Y. C., Ku, Y., Tseng, Y. H. and Kuo, Y. L., “Feasibility Study of Fe-Ti Based Oxygen Carriers for Chemical Looping Combustion,” Energy Procedia, Vol. 61, pp. 1398-1401 (2014).
Lumay, G., Boschini, F., Traina, K., Bontempi, S., Remy, J. C., Cloots, R. and Vandewalle, N., “Measuring the Flowing Properties of Powders and Grains,” Powder Technol., Vol. 224, pp. 19-27 (2012).
Markström, P. and Lyngfelt, A., “Designing and Operating a Cold-Flow Model of a 100 kW Chemical-Looping Combustor,” Powder Technol., Vol. 222, pp. 182-192 (2012).
Mattisson, T., Johansson, M. and Lyngfelt, A., “Multicycle Reduction and Oxidation of Different Types of Iron Oxide Particles-Application to Chemical-Looping Combustion,” Energy Fuels, Vol. 18, pp. 628-637 (2004).
Mendiara, T., Abad, A., De Diego, L.F., Garcia-Labiano, F., Gayán, P. and Adánez, J., “Use of an Fe-Based Residue from Alumina Production as an Oxygen Carrier in Chemical-Looping Combustion,” Energy Fuels, Vol. 26, pp. 1420-1431 (2012).
Moldenhauer, P., Rydén, M. and Lyngfelt, A., “Testing of Minerals and Industrial by-Products as Oxygen Carriers for Chemical-Looping Combustion in a Circulating Fluidized-Bed 300W Laboratory Reactor,” Fuel, Vol. 93, pp. 351-363 (2011).
Monazam, E. M., Breault, R. W. and Siriwardane, R., “Reduction of Hematite (Fe2O3) to Wüstite (FeO) by Carbon Monoxide (CO) for Chemical Looping Combustion,” Chem. Eng. J., Vol. 242, pp. 204-210 (2014).
Monazam, E.R., Breault, R.W., Siriwardane, R., Richards, G. and Carpenter, S., “Kinetics of the Reduction of Hematite (Fe2O3) by Methane (CH4) during Chemical Looping Combustion: A Global Mechanism,” Chem. Eng. J., Vol. 232, pp. 478-487 (2013).
Olivier, J. G. J., Janssens-Maenhout, G., Muntean, M. and Peters J. “Trends in Global CO2 Emission: 2013 Report,” PBL Netherlands Environmental Assessment Agency (2013).
Pans, M. A., Gayán, P., de Diego, L. F., García-Labiano, F., Abad, A. and Adánez, J., “Performance of a Low-cost Iron Ore as an Oxygen Carrier for Chemical Looping Combustion of Gaseous Fuels,” Chem. Eng. Res. Des., Vol. 93, pp. 736-746 (2015).
Peng, Z., Doroodachi, E., Alghamdi, Y. A., Shah, K., Luo, C. and Moghtaderi, B., “CFD–DEM Simulation of Solid Circulation Rate in the Cold Flow Model of Chemical Looping Systems,” Chem. Eng. Res. Des., Vol. 95, pp. 262-280 (2015).
Perreault, P. and Patience, G. S. “Ilmenite-CO Reduction Kinetics,” Fuel. Vol. 165, pp. 166-172 (2016).
Sestak, J. and Berggren, G., “Study of the Kinetic of the Mechanism of Solid-State Reactions at Increasing Temperatures,” Thermochim. Acta, Vol. 3, pp. 1-12 (1971).
Song, Q., Xiao, R., Deng, Z., Zhang, H., Shen, L., Shen, J. and Zhang, M., “Chemical-looping Combustion of Methane with CaSO4 Oxygen Carrier in a Fixed Bed Reactor,” Energy Convers. Manage., Vol. 49, pp. 3178-3187 (2008).
Su, M., Ma, J., Tian, X. and Zhao, A., “Reduction Kinetics of Hematite as Oxygen Carrier in Chemical Looping Combustion,” Fuel Process. Technol., (2016).
Zhang, S., Xiao, R. and Zheng, W. “Comparative Study between Fluidized-Bed and Fixed-Bed Operation Modes in Pressurized Chemical Looping Combustion of Coal,” Appl. Energy, Vol. 130, pp. 181-189 (2014).
Zhang, Y., Doroodchi, E. and Moghtaderi, B., “Chemical Looping Combustion of Ultra Low Concentration of Methane with Fe2O3/Al2O3 and CuO/SiO2,” Appl. Energy, Vol. 113, pp. 1916-1923 (2014).
Zhao, B., Xu, X., Gao, J., Fu, Q. and Tang, Y., “Structure Characterization of WO3/ZrO2 Catalysts by Raman Spectroscopy,” J. Raman Spectrosc., Vol. 27, pp. 549-554 (1996).
Zhao, Y. and Shadman, F., “Kinetic and Mechanism of Ilmenite Reduction with Carbon Monoxide,” AlChE J, Vol. 36, pp. 1433-1438 (1990).
Zhao, Y. and Shadman, F., “Reduction of Ilmenite with Hydrogen,” Ind. Eng. Chem. Res., Vol. 30, pp. 2080-2087 (1991).

QR CODE