簡易檢索 / 詳目顯示

研究生: 江友良
Yu-liang Chiang
論文名稱: 長行程微米精度之氣壓缸-氣壓肌肉致動器精密伺服定位控制之研究
Development of a Pneumatic-Fluidic Muscle Hybrid Servo Positioning System with Large Stroke and Micrometer Accuracy
指導教授: 江茂雄
Mao-hsiung Chiang
郭中豐
Chung-feng Kuo
口試委員: 鍾清枝
Ching-chi Chung
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 117
中文關鍵詞: 氣壓無桿缸-氣壓肌肉致動器伺服定位控制氣壓無桿缸氣壓肌肉致動器模糊滑動控制定位控制
外文關鍵詞: pneumatic rodless cylinder-fluidic muscle actuat, rodless cylinder, fluidic muscle actuator, fuzzy sliding mode control, positioning control
相關次數: 點閱:392下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在應用氣壓無桿缸與氣壓肌肉致動器之結合,發展單軸長行程微米精度伺服定位平台與控制,大行程以流量伺服閥進行無桿氣壓缸粗定位,小行程由壓力伺服閥控制氣壓肌肉致動器進行較精密之定位補償。本文主要探討在純氣壓伺服控制於單軸之定位效果以及不同尺寸之氣壓肌肉致動器的特性。
    控制器以不需氣壓肌肉致動器數學模型的模糊滑動控制理論為基礎,發展氣壓無桿缸控制器及氣壓肌肉致動器之模糊滑動控制器,希望能改善傳統氣壓伺服定位的控制性能。實驗證實,三種不同尺寸的氣壓肌肉致動器在模糊滑動控制器控制下定位誤差可達10μm以內。而氣壓無桿缸與氣壓肌肉致動器結合之混合定位系統,可達大行程200mm及定位誤差亦可達10μm以內。


    This thesis aims to develop an intelligent hybrid pneumatic-muscle fluidic single axis platform with large stroke and mircometer precision. In the axis the pneumatic servo system serves to position in coarse stroke and the fluidic muscle actuator (FMA) compensates fine stroke. This single-axis system is constituted with a rodless cylinder and a fluidic muscle actuator combined. The thesis focuses on the study of the positioning control of axis and the characteristics of variant size of fluidic muscles.
    The fuzzy sliding mode controller (FSMC) is used to develop the controllers of pneumatic rodless cylinder and fluid muscle actuator. The experimental results show that the system can achieve positioning response and accuracy deviation of 10 μm for single axis with high response for maximum stroke of 200mm.

    中文摘要 I 英文摘要 II 致  謝 III 目  錄 IV 表目錄 VII 圖目錄 IX 符號索引 XV 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 3 1.2.1 氣壓系統之回顧 3 1.2.2 氣壓肌肉致動器之回顧 4 1.2.3 控制理論之回顧 5 1.3 研究方向及本文架構 6 1.3.1 研究方向 6 1.3.2 本文架構 7 第二章 實驗架構與設備 8 2.1實驗設備 9 2.1.1 氣壓無桿缸 9 2.1.2 氣壓流量比例伺服閥 10 2.1.3 氣壓肌肉致動器 11 2.1.3.1氣壓肌肉致動器材料簡介 13 2.1.3.2氣壓肌肉致動器作用力簡介 14 2.1.3.3氣壓肌肉致動器之優缺點 15 2.1.4.4氣壓肌肉致動器之磁滯現象 15 2.1.4.5氣壓肌肉致動器之蠕動現象 21 2.1.4 氣壓壓力比例伺服閥 21 2.1.5 光學尺 23 2.1.5.1 光學尺構造與原理 23 2.1.5.2 計數與解碼電路 23 2.1.6 壓力感測器 24 2.1.7 電腦控制介面與實驗環境 25 2.2 氣壓無桿缸伺服定位平台架構 27 2.3 氣壓無桿缸-氣壓肌肉致動器伺服定位平台架構 28 第三章 控制理論 30 3.1 模糊滑動控制理論 30 3.1.1 模糊滑動控制 30 3.1.2 歸屬函數模糊規則與解模糊化 32 3.1.3參數Φ、 、 設定 35 第四章 控制器設計 37 4.1 氣壓無桿缸伺服定位控制器設計 37 4.1.1 模糊滑動平面規則庫之選取 38 4.1.2 模糊滑動平面參數之選取 39 4.2 氣壓肌肉致動器伺服定位控制器設計 40 4.3 氣壓無桿缸-氣壓肌肉致動器伺服定位控制器設計 44 第五章 實驗結果與討論 45 5.1 氣壓無桿缸伺服定位實驗 47 5.2 氣壓肌肉致動器伺服定位實驗 52 5.2.1 φ40×120mm氣壓肌肉致動器於不同行程之伺服定位 實驗 52 5.2.2 φ20×103mm氣壓肌肉致動器於不同行程之伺服定位 實驗 56 5.2.3 φ10×103mm氣壓肌肉致動器於不同行程之伺服定位 實驗 60 5.3氣壓無桿缸-氣壓肌肉致動器伺服定位實驗 64 5.3.1氣壓無桿缸-氣壓肌肉致動器φ40×120mm不同切換範圍及不同行程之定位實驗 65 5.3.2氣壓無桿缸-氣壓肌肉致動器φ20×103mm不同切換範圍及不同行程之定位實驗 78 5.3.3氣壓無桿缸-氣壓肌肉致動器φ10×103mm不同切換範圍及不同行程之定位實驗 94 第六章 結論與建議 110 參考文獻 112 作者簡介 117

    [ 1 ] P. Moore, J.S. Pu, ”Pneumatic servo actuator technology”, Actuator Techonlogy, Current Practice and New Developments., IEE Colloquium, pp. 3/1-3/6, 1996.
    [ 2 ] T. Kagawa, “Heat Transfer Effects on the Frequency Response of a Nozzle Flapper”, ASME, Vol.107, pp.332-336, 1985.
    [ 3 ] K. Kawashima, T. Fujita, T. Kagawa, ”The Effect of Nonlinear Characteristics on Pneumatic Servo Systems”, Departement of Mechanical Engineering, Tokyo Mertropolitan College Technology, 2000.
    [ 4 ] F. Blackburn, G. Reethof, J. L. Shearer, “Fluid Power Control”, M.I.T. Press, 1960.
    [ 5 ] H. E. Merrit, “Hydraulic Control System”, John Willey & Sons Inc., New York, 1967.
    [ 6 ] H. F. Schulte, “The characteristics of the McKibben artificial pneumatic muscle”, The Proceedings of the Application of External Power in Prostherics and Orthotics Conference, Appendix H. Publ. 874, National Academy of Sciences, Washington,DC. pp94-115, 1961
    [ 7 ] D. G. Caldwell, G. A. Medrano-Cerda, and M. Goodwin, “Control of pneumatic muscle actuators”, IEEE Control Syst. Mag. , pp. 40–48, Feb. 1995.
    [ 8 ] C. P. Chou and B. Hannaford, “Static and dynamic characteristics of McKibben pneumatic artificial muscles”, in Proc. IEEE Robotics Automation Conf., pp.281–286. , 1994.
    [ 9 ] J. J. Shearer, “The Study of Pneumatic Process in the Continuous Control of Motion with Compressed Air-I”, ASME Trans., pp. 233-242, 1956.
    [ 10 ] C. R. Burrows, “Effect of Position on the Stability of Pneumatic Servo Mechanisms”, J. Mech. Engrs. Sci., Vol. 11, No. 6, pp. 615-616, 1969.
    [ 11 ] P. C. Chiu, T. P. Leung, “Modeling and Microcomputer Control of a Nonlinear Pneumatic Servomechanism”, Trans. Inst. Measurement and Control, Vol.10, pp.71-78, 1988.
    [ 12 ] R. H. Weston, P. R. Moore, T. W. Thatcher, and G. Morgon, “Computer Controlled Pneumatic Servo Drives”, Proc. Instn. Mech. Engrs., Vol.198B, pp.275-281, 1984
    [ 13 ] E. Pachnicke, “Entwicklung von Methoden zur Verbesserung des Positionierverhaltens servopneumatisches Zylinderantriebe durch Mikroprozessoreinsatz”, Dissertation der RWTH Aachen, 1986.
    [ 14 ] T. Noritsugu, “Electro-Pneumatic Feedback Speed Control of a Pneumatic Motor. Part I : With an Electro-Pneumatic Proportional Valve”, Journal of Fluid Control, pp. 17-37, 1987.
    [ 15 ] T. Noritsugu, “Development of PWM Mode Electro-Pneumatic Servomechanism. Part II : Position Control of a Pneumatic Cylinder”, Journal of Fluid Control, Vol.66, pp. 65-80, 1987.
    [ 16 ] Y. Ning, M. Betemps, S. Scavarda & A. Jutard, ”A Servo Controlled Pneumatic Actuator for small Movement-Application to an Adaptive Gripper”, IEEE 15th Intcr. Conf. on Advanced Robotics, vol.2, pp. 1582-1585, 1991.
    [ 17 ] M. C. Shih, Y. F. Huang, ”Pneumatic Servo-Cylinder Position Control Using a Self-Tuning Controller”, Internationl Journal of JSME, May, Serier II,vol.35,No.2,pp.247-254 , Japan, 1992.
    [ 18 ] 許進順, “氣壓系統之快速定位控制”, 國立清華大學動力機械工程研究所碩士論文, 1994.
    [ 19 ] H. Murrenhoff, C. Boes, R. Eschmann, E. Mostert, “Stand der Entwicklung in der Servopneumatien Antriebstechnik”, O+P lhydraulik und Pneumatik 39, Nr.4, 264-281, 1995.
    [ 20 ] K. Schillings, “Servopneumatische Antriebssysteme und Handhabungsgert – Modellbildung, Auslegung und Systemtechnik”, Dissertation der RWTH Aachen, 2000.
    [ 21 ] X. Chen, M. Leufgen, “Erfassung des Reibverhaltens von Kolbendichtungen und deren Einflu auf die Positionierung von pneumatischen Systemen”, O+P lhydraulik und Pneumatik 31, Nr. 12, 914-917, 1987.
    [ 22 ] R. Eschmann, “Reibkrften an Pneumatikdichtungen, 10”, Aachener Fluidtechnisches Kolloquium, Aachen, Bahn 3, 49-69, 1992.
    [ 23 ] T. Fujita, R. Tokashiki, T. Kagawa, “Stick-slip motion in pneumatic cylinders driven by meter-out circuit”, Proc. of the 4th JHPS International Symposium on Fluid Power, Tokyo, 131-136, 1999.
    [ 24 ] T. Kazama, M. Fujiwara, “Experiment on frictional characteristics of pneumatic cylinders”, Proc. of the 4th JHPS International Symposium on Fluid Power, Tokyo, 453-458, 1999.
    [ 25 ] K .Schillings, “Antriebe und nichtlineare Regelungsverfahren fr servopneumatische Handhabungsgerte”, O+P lhydraulik und Pneumatik 37, Nr.3, 200-208, 1993.
    [ 26 ] M. C. Shih, Y. F. Huang, “Pneumatic servo cylinder position control using a self-tuning controller”, International Journal of Japanese Society of Mechanical Engineering, Series C, 35(2), 247-254, 1992.
    [ 27 ] C. Ferraresi, G. Quaglia, “High pneumatic positioner made up of two cooperating actuators”, Proc. of the 4th JHPS International Symposium on Fluid Power, Tokyo, 131-136, 1999.
    [ 28 ] 羅年良, “氣壓缸位置與壓力伺服控制系統之研究,” 國立成功大學機械工程研究所碩士論文, 1999.
    [ 29 ] 黃建銘, 白凱仁,施明璋, “速度回授補償於氣壓無桿缸伺服精密定位之研究”, 第十八屆機械工程研討會,台北, 2002.
    [ 30 ] 何啟吉, “氣壓缸與步進馬達作雙軸運動之位置控制研究,” 國立成功大學機械工程研究所碩士論文, 2002.
    [ 31 ] K. R. Pai, M. C. Shih, “Nanoaccuracy Position Control of A Pneumatic Cylinder Driven Table”, International Journal of JSME, Series C,Vol.46,.No.3, p.1062-1068, 2003.
    [ 32 ] C. P. Chou and B. Hannaford, “Measurement and modeling of McKibben pneumatic artificial”, IEEE, 1994.
    [ 33 ] D. W. Repperger, K. R. Johnson, C. A. Philips, “Nonlinear feedback controller design of a pneumatic muscle actuator system”, American Control Conference, 1999. Proceedings of the 1999.
    [ 34 ] G. K. Klute, J. M. Czerniecki, B. Hannaford, “McKibben artificial muscles: Pneumatic actuators with biomechanical intelligence”, IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM, 1999.
    [ 35 ] P. Carbonell, Z. P. Jiang, D. W. Repperger, “A fuzzy backstepping controller for a pneumatic muscle actuator system”, Intelligent Control, 2001. (ISIC '01). Proceedings of the 2001 IEEE International Symposium, 2001.
    [ 36 ] J. H. Lilly, “Adaptive tracking for pneumatic muscle actuators in bicep and tricep configurations”, IEEE Transactions on Neural Systems and Rehabilitation Engineering, September, 2003.
    [ 37 ] S. M. Djouadi, D. W. Repperger, J.E. Berlin, “Gain-scheduling H∞ control of a pneumatic muscle using wireless MEMS sensors”, Circuits and Systems, 2001. MWSCAS 2001. Proceedings of the 44th IEEE, 2001.
    [ 38 ] A. Hildebrandt, O. Sawodny, R. Neumann, A. Hartmann, “A flatness based design for tracking control of pneumatic muscle actuators Control”, Automation, Robotics and Vision, 2002. ICARCV, 2002.
    [ 39 ] S. Davis, D. G. Caldwell, N. Tsagarakis, J. Canderle, “Enhanced modelling and performance in braided pneumatic muscle actuators”, International Journal of Robotics Research, 2003.
    [ 40 ] T. J. Procky and E. H. Mamdani, “Alinguistic Self-Organizing Process Controller”, Automatica, Vol.5,pp.15-30, 1979.
    [ 41 ] S. H. Shao, “Fuzzy self-organizing controller and its application for dynamic processes”, Fuzzy Sets and System26, pp.151-164, 1988.
    [ 42 ] B. S. Zhang, J. M. Edmunds, “Self-Organizing Fuzzy Logic Controller”, IEE Proceedings-D, Vol.139, No.5, pp.460-464, 1992.
    [ 43 ] J. C. Wu, T. S. Liu, “A sliding-mode approach to fuzzy control design”, IEEE Trans. Control Systems Technology, vol. 4, no. 2, 141-151, 1996.
    [ 44 ] S. W. Kim, J. J. Lee, “ Design of a fuzzy controller with fuzzy sliding surface”, Fuzzy Sets & Systems, vol.71, no.3, pp.359-67, 1995.
    [ 45 ] J. C. Lo, Y. H. Kuo, “Decoupled Fuzzy Sliding-Mode Control “, IEEE Trans. on Fuzzy Systems,Vol.6,No.3, pp.426-435, Aug. 1998.
    [ 46 ] J. F. Shiu, C. M. Lin, “Decoupled Fuzzy Controller Designed with Fuzzy Sliding Surface”, 2000 Automatic control Conference, pp.463-468. 2000.
    [ 47 ] C. M. Lin, C. F. Hsu, “Decoupled Fuzzy Sliding-Mode Control of a Nonlinear Aeroelastic Structure”, Fuzzy Systems,2002. FUZZ-IEEE'02. Proceedings of the 2002 IEEE International Conference on , Vol.1, pp.662 -667 , 2002.
    [ 48 ] B. J. Choi, S. W. Kwak, and B. K. Kim, “Design of a single-input fuzzy logic controller and its properites”, Fuzzy Sets and Systems, pp.299-308, 1999.
    [ 49 ] S. Y. Chen, F. M. Yu, and H. Y. Chung, “Decoupled fuzzy controller design with dingle input fuzzy logic”, Department of Electrical Engineering, National Central University,Fuzzy Set and Systems 129, pp.335-342, 2002.
    [ 50 ] D. Q. Zhang and S. K. Panda, “Chattering-free and fast-response sliding mode controller”, IEE Proc,-Control Theory Appl., Vol. 146, No. 2, pp.171-177, Mar. 1999.
    [ 51 ] 楊旻政, “基於距離可變控制法則模糊滑動模糊控制器之設計”, 大同大學,電機所,2003.
    [ 52 ] M. H. Chiang, D. N. Chou, “Adaptive Variable Structure Control for a Pneumatic- Piezoelectrical Hybrid Positioning System”, The 18th National Conference on Mechanical Engineering of the Chinese Society of Mechanical Engineers, Taipei, Taiwan , 2001.
    [ 53 ] F. L. Yang, M. H. Chiang, C. N. Wu, C. H. Kuo, Y. N. Chen, and Y. C. Yeh, “Study on Force Control and Load-Sensing Control of a Hydraulic Valve-Controlled Cylinder Systems with Decoupling Self-Organizing Fuzzy Sliding Mode Controller”, Bulletin of the College of Engineering, N.T.U., No. 92, pp. 21–34, 2004.
    [ 54 ] M. H. Chiang, F. L. Yang, Y. N. Chen, and Y. P. Yeh, “Integrated Control of Clamping Force and Energy-Saving in Hydraulic Injection Moulding Machines Using Decoupling Fuzzy Sliding-Mode Control”, International Journal of Advanced Manufacturing Engineering, published online: 12 Jan. 2005.
    [ 55 ] M. H. Chiang, Y. W. Chien, “Parallel control of velocity control and energy-saving control on a hydraulic valve controlled system using self-organizing fuzzy sliding mode control”, JSME International Journal, Series C, Vol.46, No.1, pp.224-231, 2003.
    [ 56 ] M. H. Chiang, L. W. Lee, G. H. Huang, “Development of a Hydraulic-Piezo-Actuator for Hybrid Positioning Control with Large Stroke and Sub-Micrometer Accuracy”, IEEE International Conference on Mechatronics (ICM2005),Taipei,Taiwan, 2005.
    [ 57 ] M. H. Chiang, L. W. Lee, G. H. Huang, “大行程高出力次微米精度之液壓-壓電混合定位系統設計與控制”, The 21st National Conference on Mechanical Engineering of the Chinese Society of Mechanical Engineers, Kaoshiung,Taiwan , 2004.
    [ 58 ] M. H. Chiang, I. C. Yeh, “Parallel Control of Path Control and Energy-Saving Control for a Hydraulic Valve-Controlled Cylinder System Using Decoupling Fuzzy Sliding Mode Control”, The 13rd National Conference on Automation Technology,Taipei,Taiwan, Jun. 2004.
    [ 59 ] M. H. Chiang, Y. P. Yeh,”解耦合自組織模糊滑動模式控制應用於閥控液壓缸系統變排量節能控制與速度控制之平行控制研究”,The 20th National Conference on Mechanical Engineering of the Chinese Society of Mechanical Engineers, Taipei,Taiwan , 2003.
    [ 60 ] M. H. Chiang, Y. W. Chien, “Integration of path control and load-sensing control on a hydraulic valve controlled system using fuzzy sliding mode control”, The 18th National Conference on Mechanical Engineering of the Chinese Society of Mechanical Engineers,Taipei,Taiwan , 2001.
    [ 61 ] 吳佳勳, “智慧型長行程奈米精度氣壓-壓電混合精密伺服YZ定位控制”, 國立台灣科技大學工程技術所自動化及控制研究所碩士論文, 2005.
    [ 62 ] 楊文賢, “長行程奈米精度之氣壓-壓電混合精密伺服XYZ三軸定位系統設計與智慧型控制”, 國立台灣科技大學工程技術所自動化及控制研究所碩士論文, 2006.
    [ 63 ] Agilent, “Datasheet of HCTL-2032 Quadrature Decoder”, 2005.
    [ 64 ] Festo AG., “xDKI 2008 Products Catalogues Software”, 2008.
    [ 65 ] 李寶仁, 劉軍, 楊鋼, “氣動人工肌肉系統建模與仿真”, Chinese Journal of Mechanical Engineering”,Vol.39,No.7, Jul, 2003.

    無法下載圖示 全文公開日期 2013/08/07 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE