簡易檢索 / 詳目顯示

研究生: 黃志雄
Chih-Hsiung Huang
論文名稱: 功能性微粒對熱塑性聚氨酯薄膜微多孔形成機制之探討
A Study on Formation Mechanism of Microporous Thermoplastic Polyurethane Films Containing Functional Particles
指導教授: 邱顯堂
Hsien-Tang Chiu
口試委員: 邱智瑋
Chih-Wei Chiu
賴秋君
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 85
中文關鍵詞: 功能性微粒三軸共押出薄膜延伸致孔微多孔透濕防水除臭
外文關鍵詞: functional particles, triaxial coextrusion film, microporous, breathable film, deodorization
相關次數: 點閱:268下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究的目標是利用環境友善之加工製程,開發出具有高透濕防水性、高防水性、除臭等多功能複合微多孔薄膜,並探討薄膜微多孔結構形成之機制。
      首先將熱塑性聚氨酯及固定添加量之功能性微粒均勻混合並逐步定量投入雙螺桿混練機,藉由高溫與雙螺桿之剪切應力,使其均勻共混製成功能性母粒,並利用三軸薄膜共押出機以母粒-熔融共混的方式製備不同比例之複合薄膜,最後利用薄膜方向延伸機使薄膜具備微孔洞結構,稱為延伸致孔薄膜。此外,從原料的製備、薄膜的製程到後段加工過程,皆是以試量產設備進行生產。
      隨後針對原料熱塑性聚氨酯(TPU)、咖啡渣微粒、碳酸鈣微粒等功能性填料進行熱性質及流變行為分析以提供加工製程中溫度參數之依據及限制。並製備成功能性微粒/熱塑性聚氨酯薄膜,由後續分析得知薄膜基本力學性質皆會隨著功能性微粒加入以及延伸致孔加工法而下降,防水性則會隨著功能性微粒的加入而增強。光譜分析功能性微粒並不影響熱塑性聚氨酯之化學結構。並進一步探討出功能性微粒的填充及延伸致孔加工法對薄膜透濕性能具有提升的效果,此外,咖啡渣微粒能賦予薄膜特殊良好除臭性能。最重要的是從微觀的方式觀察功能性微粒在薄膜中的分散性,並探討熱塑性聚氨酯以延伸致孔法加工,其微多孔結構之形成機制與先前學者所提出的微孔模型相符。


      In this study, we aimed to develop multifunctional composite films with high water vapor permeability, high waterproof and deodorizing properties through environmentally friendly processes and discussed the mechanism of the formation of microporous structures.
      In this research, TPU and functional particles were mixed thoroughly in the first place. Then, twin screw mixer was used to prepare masterbatches under high temperature and high shear stress. Various composite films with different formula were produced by triaxial co-extruder with melt blending of TPU and masterbatches. Finally, microporous structures were created through laboratory stretching machine. All the procedures in this study including preparation of raw materials, film production and processing were conducted by pilot run machines.
      Then, thermal stability and rheological behaviors of thermoplastic polyurethane (TPU) and functional particles such as coffee grounds or calcium carbonate powder were investigated. As a consequence, subsequent processing parameters like temperature range were found. Then, functional particles/TPU composite films were made for further characterizations. The results revealed that, with the addition of particles, microporous structure were formed during stretching process which led to decrease the mechanical properties while enhancing waterproof performance and water vapor permeability. IR and XRD were used to examine the interactions between TPU and functional particles. The outcome showed the structure of TPU remained the same after adding functional particles. Moreover, coffee grounds can act as a deodorizer. Most of all, dispersibility of particles were studied by SEM and the mechanism of microporous structures by stretching was proved to consist with the model proposed in previous research.

    誌謝 I 摘要 II Abstract III 目錄 IV 圖目錄 VII 表目錄 IX 第1章 緒論 1 1.1 研究背景與發展趨勢 1 1.2 研究動機與目的 3 1.3 參考文獻 4 第2章 文獻回顧 5 2.1 熱塑性聚氨酯彈性體 5 2.2 微多孔結構及製程 8 2.2.1 微多孔薄膜結構 8 2.2.2 微多孔製程方式 9 2.2.2.1 填充機制 9 2.2.2.2 形變機制 11 2.2.2.3 相變機制 11 2.3 透濕防水織物 13 2.3.1 透濕防水機制及織物特性 13 2.3.1.1 微孔質擴散透濕機制 14 2.3.1.2 親水型透濕防水機制 17 2.3.2 透濕防水織物之製造及加工技術 18 2.3.2.1 高密度透濕防水織物 19 2.3.2.2 塗佈/塗層(Coating) 透濕防水織物 20 2.3.2.3 貼合/層壓(Lamination) 透濕防水織物 22 2.3.3 透濕防水織物之性能測試 24 2.4 填料混煉加工技術 26 2.4.1 混練加工功能性母粒 26 2.4.2 雙螺桿混練 27 2.4.3 有機粉體-咖啡渣 28 2.4.4 無機粉體-碳酸鈣 28 2.5 薄膜製造工藝 29 2.5.1 押出吹塑成型法 29 2.5.2 押出流延成型法 31 2.5.3 多層薄膜技術 32 2.5.4 薄膜延伸技術 34 2.6 參考文獻 36 第3章 實驗材料、儀器與方法 39 3.1 實驗材料 39 3.2 實驗儀器 39 3.3 實驗方法 41 3.3.1 實驗架構 41 3.3.2 原料母粒製備 42 3.3.3 薄膜製備 43 3.3.4 薄膜延伸致孔 45 3.3.5 儀器試驗 46 3.3.5.1 熱性質與流變行為 46 3.3.5.2 力學性質 48 3.3.5.3 型態分析 49 3.3.5.4 透過率性質 51 第4章 結果與討論 52 4.1 原物料鑑定 52 4.1.1 熱性質 52 4.1.2 流變行為 56 4.1.3 表面型態與結構特徵 60 4.2 未延伸薄膜 63 4.2.1 力學性質 63 4.2.2 表面型態與特徵 70 4.2.3 透過率性質 74 4.3 延伸致孔薄膜 75 4.3.1 力學性質 75 4.3.2 表面型態與特徵 78 4.3.3 透過率性質 81 4.4 參考文獻 82 第5章 結論 83 5.1 熱性質分析與流變行為 83 5.2 力學性質分析 83 5.3 表面形態與結構特徵觀察 84 5.4 透過率性能之探討 84 5.5 微多孔形成機制之探討 85

    [1] O. Bayer, H. Rinke, W. Siefken. L. Ortner, and H. Schild, German Patent 728981, 1937
    [2] A. E. Christ and W. E. Hanford, U.S. Patent 2,333,639, 1940
    [3] British Patent 580 524; British Patent 574 134, 1942
    [4] P. Pinten, German Patent 932 633, 1943
    [5] C. S. Schollenberger, H. Scott, G.R. Moore, Rubber World, 1958 137, 549;
    C. S. Schollenberger, U.S. Patent 2,871,218 1955
    [6] J. D. Lee, S. M. Yang, Polymer Engineering and Science, 1995 35
    [7] J. Rosch, Polymer Engineering and Science, 1995 35
    [8] C. Duvall, V. Sellitti, A. Topolkaraev, E. Hiltner, Bear, Polymer, 1994 35
    [9] K. Palanivelu, P. Sivaraman, M. Dasaratha, Polymer Testing, 2002 21
    [10] C. S. Schollenberger and K. Dinbergs, J. Elastoplastics, 1973 5, 222; 1975 7,65
    [11] W. Goyert, W. Grimm, A. Awater, H. Wagner, and B. Kruger, German Patent Appl. 2854406, 1978
    [12] D. A. Holmes, Waterproof breathable fabrics, 2000, Cambridge: Woodhead Publishing
    [13] K. Xu, S. J. Zhang, China Synthetic Resin and Plastics, 2009 26, (5) 63-66
    [14] G. W. Chen, Y. M. Zeng, Membrane Science and Technology, 2003 23, (4) 116-122
    [15] S. Chatterjee, M. Biswas, Journal of Applied Polymer Science, 1992 4
    [16] SC. Ganguly, BC. Bhattacharyya, Journal of Applied Polymer Science, 1998 69
    [17] S. Nag, S. Nakamura, Y, Mizutani, Applied Polymer Science, 1992 45
    [18] Y. Mizutani, S. Nago, M. Sasai, Applied Polymer Science, 2000 77
    [19] J. Kurdi, AY. Tremblay, Journal of Membrane Science, 2001 184, 175-186
    [20] H. Sakurazawa, U.S. Patent 4,057,377, 1977
    [21] S. Kagawa U.S. Patent 5,352,108, 1994
    [22] K. Kurumada, T. Kitamura, N. Fukumoto, Journal of Membrane Science, 1998 149
    [23] J. J. Kim, T. S. Jang, Y. D. Kwon, Journal of Membrane Science, 1994 93
    [24] K. Kamada, S. Minami, K. Yoshida, U.S. Patent 4,055,696, 1977
    [25] R. Zsigmondy, R. Bachmann, U.S. Patent 1,421,341, 1992
    [26] H. C. Park, Journal of Membrane Science, 1999 156, 169–178
    [27] H. Matsuyama, Journal of Applied Polymer Science, 1999 74
    [28] W. A. Light, U.S. Patent 5,084,340 1992
    [29] X. D. Zhou, P. Zhu, B. Wang, Textile Dyeing and Finishing, 2006 28
    [30] Keighley, Journal of Coated Fabrics, 1985, 15, 89-105
    [31] H. N. Liu, Y. Xue, Z. S. Cai, Polyurethane Industry, 2010 25, 2-7
    [32] Z. H. Li, C. M. Wang, Dyeing and Finishing, 2005 31, 29-31
    [33] Y. Lee, China Fiber Inspection, 2008 11, 42-44
    [34] X. F. Xu, X. H. Zhou, S. Y. Wang, Shanghai Textile Science and Technology, 2005 33
    [35] A. Mukhopadhyay, V. K. Midha, Journal of Industrial Textiles 2008 37 (3), 225-262
    [36] H. Quan, Dyeing and Finishing, 2004 4, 43-47
    [37] G. D. Gao, China Textile Leader, 2006 4, 79-83
    [38] Y. Liu, J. A. Ma, Journal of Zhongyuan Institute of Technology, 2004 15
    [39] R. G. Lomax, Journal of Coated Fabrics, 1985 15, 40-66
    [40] R. W. Baker, Kirk-Othmer encyclopedia of chemical technology:Membrane, 1995 178
    [41] R. W. Gore, U.S. Patent 3,953,566, 1976
    [42] L. Q. Zeng, China Textile Leader, 2011 6, 84-86
    [43] W. M. Wang, H. X. Ni, Technical Textiles, 2003 21
    [44] L. H. Chen, Journal of Textile Research, 2012 33
    [45] Q. J. Wang, Y. Z. Zhang, et al. Leather Science and Engineering, 2011 21
    [46] Y. B. Xia, J. F. Chang, Polyester Industry, 2001 14, (1) 15-17
    [47] J. L. Chen, Cotton Textile Technology, 2010 38
    [48] H. Y. Wu, Y. Zhang, H. Xie, Journal of Textile Research, 2011 32, 34-40
    [49] J. Jia, G. H. Wang, China Leather, 2006 35, 38-41
    [50] Y. Y. Yang, Z. K. Jia, J. G. Meng, Advanced Textile Technology, 2010 18
    [51] M. Drinkmann, Journal of Industrial Textiles, 1992 21, 199-211
    [52] Y. R. Chen, X. Y. Chen, P. Cheng, Cotton Textile Technology, 2006 34
    [53] Y. Pan, S. Y. Wang, Journal of China Textile University, 1998 24, 110-114
    [54] C. X. Gao, Dyeing and Finishing, 2005 31
    [55] Y. Hu, V. Topolkaraev, et al. Journal of Applied Polymer Science, 2001 81
    [56] X. W. Liu, Tianjin Textile Science and Technology, 2009 2
    [57] C. Y. Lin, C. H. Ren, Engineering Plastics Application, 2004 32
    [58] S. L. Zheng, S. C. Lu, China powder Science and Technology, 2002 8
    [59] Y. C. Guo, Q. C. Li, B. R. Yan, Chemical Industry and Engineering Progress, 2001 20
    [60] Z. Q. X, J. A. Ke, Knitting Industry, 2010 10
    [61] Y. J. Liu, China Non-Metallic Industry Herald, 2006 1
    [62] X. Y. Zhou, Y. P. Yin, S. R. Yao, Polymer Materials Science and Engineering, 2002 18
    [63] T. Kanai and G. Campbell, Film Processing Advances (2nd ed. ) 2014 Cincinnati: Hanser Publications.
    [64] W. J. Schrenk, J. Alfrey, In Polymer Blends. 1987 Orlando: Academic Press

    QR CODE