簡易檢索 / 詳目顯示

研究生: 陳玟羽
Wen-Yu Chen
論文名稱: 開發增進石化廢水生物降解效率之潛力菌株並評估其於循環經濟研究的應用
Development of the Potential Bacterial Strains for Improvement of their Bioremediation Efficiency for Waste Water Treatment of Petroleum Chemicals and Assessing their Applications in Circular Economy Research
指導教授: 江志強
Jyh-Chiang Jiang
俞聖法
Sheng-Fa Yu
口試委員: 高震宇
Chen-Yu Kao
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 146
中文關鍵詞: 石化廢水處理生物降解活性污泥次世代定序全基因定序生物高分子
外文關鍵詞: Petroleum Waste Water Treatment, Bioremediation, Activated Sludge, Next Generation Sequencing, Whole Genome Sequencing, Biopolymer
相關次數: 點閱:329下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


致謝 i 摘要 ii Abstract iv 目錄 vi 圖目錄 ix 表目錄 xii 壹、前言 1 1.1 研究目的 1 1.2 研究動機 2 貳、文獻回顧 3 2.1 廢水處理相關背景 3 2.1.1效能評估指標 3 2.1.2 高鹽廢水處理 4 2.1.3 丙烯腈(AN)廢水處理 6 2.1.3 環氧氯丙烷(ECH)廢水處理 9 2.2 生物處理法 10 2.2.1 活性污泥法(Activated Sludge) 10 2.2.2 微生物處理效能影響因子 11 2.2.3鹵素化合物降解 15 2.2.4腈化物降解 17 2.3 微生物分析 22 2.3.1 分析菌相結構之生物技術 22 2.3.2 次世代定序(Next generation sequence, NGS) 26 2.3.3 生物高分子 28 參、實驗方法及步驟 32 3.1 實驗藥品 32 3.2 分子生物實驗材料 34 3.2.1 微生物 34 3.2.2 核酸實驗套組 34 3.3 儀器及設備 35 3.4 廢水組成分析 37 3.4.1 廢水以二氯甲烷萃取 38 3.4.2 廢水衍生化 38 3.4.3 氣相層析質譜儀之條件 38 3.5 活性汙泥 39 3.5.1 活性汙泥微生物組成分析 39 3.5.2 活性汙泥微生物培養篩選 42 3.6 環境微生物特性分析 46 3.6.1 微生物儲存 46 3.6.2 微生物培養 46 3.6.3 化學需氧量分析 50 3.6.4 廢水降解後成份分析 51 3.6.5 生物高分子產量測試 51 4.1 廢水成分鑑定 54 4.1.1 廢水以二氯甲烷萃取 54 4.1.2 廢水衍生化 57 4.2活性汙泥 59 4.2.1 次世代定序分析活性污泥組成(Next generation sequencing, NGS) 59 4.2.2 汙泥微生物培養篩選 62 4.3 環境微生物特性分析 65 4.3.1微生物生長曲線測試 65 4.3.2 微生物廢水降解效能評估 68 4.3.3 廢水在篩選優化微生物包含混合汙泥降解前後差異分析 70 4.3.4 單一菌系分解效能測試 82 4.3.5 微生物全基因定序 86 4.3.6 生物高分子聚合物產率測試 92 伍、結論與未來展望 98 5.1結論 98 5.2研究心得 99 5.3 未來展望 102 陸、引用文獻 103 附錄 106

1.Tanwi Priya; Brijesh K. Mishra; Majeti Narasimha Vara Prasad, Physico-chemical techniques for the removal of disinfection by-products precursors from water. Disinfection By-products in Drinking Water, 2020, 23-58,
2.Z. Hu; D. Grasso, Water Analysis | Chemical Oxygen Demand. Encyclopedia of Analytical Science 2005, 325-330.
3.Miklas Scholz, Constructed wetlands. Wetland Systems to Control Urban Runoff 2006,
143-168.
4.Michaud; Joy P., Measuring Total Suspended Solids and Turbidity in lakes and streams. Washington State Department of Ecology, 1994
5.G.S. Bilotta; R.E. Brazie, Understanding the influence of suspended solids on water quality and aquatic biota. Water Research 2008; Vol. 42, 2849-2861.
6.Holenda, B.; Domokos, E.; Rédey, Á.; Fazakas, J., Dissolved oxygen control of the activated sludge wastewater treatment process using model predictive control. Computers & Chemical Engineering 2008, 32 (6), 1270-1278.
7.A.R. Dincer; F. Kargi, Enhancement of biological treatment performance of saline wastewater by halophilic bacteria. Bioprocess Engineering,1996,15 (1), 51-58
8.Kargi, F.; Dincer, A. R., Effect of salt concentration on biological treatment of saline wastewater by fed-batch operation. Enzyme and Microbial Technology 1996, 19 (7), 529-537.
9.Tuin, B. J. W.; Geerts, R.; Westerink, J. B.; van Ginkel; C. G., Pretreatment and biotreatment of saline industrial wastewaters. Water Science and Technology 2006, 53 (3), 17–25.
10.Senthilkumar Sivaprakasam; Surianarayanan Mahadevan; Sudharshan Sekar; Susheela Rajakumar, Biological treatment of tannery wastewater by using salt-tolerant bacterial strains Microbial Cell Factories 2008, 7 (1), 15.
11.Tu, X.; Pan, Y.; Gao, H., Post-treatment of bio-treated acrylonitrile wastewater using UV/Fenton process: degradation kinetics of target compounds. Environ Sci Pollut Res 2019, 26, 24570–24580.
12.Guo, Y.; Chang, H.; Wang, Q., Hydrolytic denitrification and decynidation of acrylonitrile in wastewater with Arthrobacter nitroguajacolicus ZJUTB06-99. AMB Expr 2018, 8, 191.
13.Li An, Biological Wastewater Treatment: Selecting The Process, Veolia Water Solutions & Technologies 2013
14.Samer, M., Biological and Chemical Wastewater Treatment Processes. Wastewater Treatment Engineering 2015.
15.Vijayakumari SJ; Sasidharannair NK; Nambisan B; Mohandas C., Optimization of media and temperature for enhanced antimicrobial production by bacteria associated with Rhabditis sp. Iran J Microbiol 2013 5 (2), 136–141.
16.Han Qing Yua; Herbert H.P. Fang, Acidogenesis of gelatin-rich wastewater in an upflow anaerobic reactor: influence of pH and temperature. Water Research 2003, 37 (1), 55-66.
17.Erika Pittoors; Yaping Guo; Stijn W. H. Van Hulle, Modeling Dissolved Oxygen Concentration For Optimizing Aeration Systems And Reducing Oxygen Consumption In Activated Sludge Processes: A Review. Chemical Engineering Communications 2014, 201 (8)
18.Fan Meng; Anqi Yang; Guangming Zhang; Hangyao Wang, Effects of dissolved oxygen concentration on photosynthetic bacteria wastewater treatment: Pollutants removal, cell growth and pigments production. Bioresource Technology 2017, 241, 993-997.
19.Andrew, T. Nottingham; Lettice, C. Hicks; Adan, J. Q. Ccahuana; Norma Salinas; Erland Baath; Patrick Meir, Nutrient limitations to bacterial and fungal growth during cellulose decomposition in tropical forest soils. Biology and Fertility of Soils 2018, 54, 219–228.
20.Bernard, E. Igiri; Stanley, I. R. Okoduwa; Grace, O. Idoko; Ebere, P. Akabuogu; Abraham, O. Adeyi; Ibe, K. Ejiogu, Toxicity and Bioremediation of Heavy Metals Contaminated Ecosystem from Tannery Wastewater: A Review. Journal of Toxicology 2018.
21.Fetzner, S., Aerobic Degradation of Halogenated Aliphatics. Handbook of Hydrocarbon and Lipid Microbiology 2010, 865-885.
22.Banerjee, A.; Sharma, R.; Banerjee, U., The nitrile-degrading enzymes: current status and future prospects. Applied Microbiol and Biotechnol 2002, 60 (1-2), 33–44.
23.Prasad, S.; Bhalla, T. C.; Nitrile hydratases (NHases): At the interface of academia and industry. Biotechnology Advances 2010, 28 (6), 725–741.
24.Liu, Bing-Ru; Jia Guo-Mei; Chen Jian; Wang Gang, A Review of Methods for Studying Microbial Diversity in Soils. Pedosphere 2006, l6 (1), 18-24.
25.Pavan Kumar Agrawal; Shruti Agrawal; Rahul Shrivastava, Modern molecular approaches for analyzing microbial diversity from mushroom compost ecosystem. Biotech 2015, 5 (6), 853–866.
26.Beatrix, W. Alsanius; Walter Wohanka, Chapter 5 - Root Zone Microbiology of Soilless Cropping Systems. Soilless Culture (Second Edition) 2019, 149-194.
27.Kela P. Weber; Raymond L. Legge, Community-Level Physiological Profiling. Bioremediation 2009, 263–281.
28.Michel A. Cavigelli; G. Philip Robertson; Michael J. Klug, Fatty acid methyl ester (FAME) profiles as measures of soil microbial community structure. The Significance and Regulation of Soil Biodiversity 1995, 99-113.
29.Jennifer L.Kirk; Lee A. Beaudettea; Miranda Hart; Peter Moutoglis; John N. Klironomos; Hung Lee; Jack T. Trevors, Methods of studying soil microbial diversity. Journal of Microbiological Methods 2004, 58 (2), 169-188
30.Nidhi Gupta; Vijay K. Verma, Next-Generation Sequencing and Its Application: Empowering in Public Health Beyond Reality. Microbial Technology for the Welfare of Society 2019, 17, 313–341.
31.Voelkerding, K. V.; Dames, S. A.; Durtschi, J. D, Next-Generation Sequencing: From Basic Research to Diagnostics. Clinical Chemistry 2009, 55 (4), 641–658.
32.Anthony Rhoads; Kin Fai Au, PacBio Sequencing and Its Applications. Genomics, Proteomics & Bioinformatics 2015, 13 (5), 278-289.
33.Wei Li; Jin-chi Yao; Jin-long Zhuang; Yuan-yuan Zhou; James P. Shapleigh; Yong-di Liu, Metagenomics revealed the phase-related characteristics during rapid development of halotolerant aerobic granular sludge. Environment International, 2020.
34.Sai Siddarth Kalburge; W. Brian Whitaker; E. Fidelma Boyd, High-Salt Preadaptation of Vibrio parahaemolyticus Enhances Survival in Response to Lethal Environmental Stresses. Journal of Food Protection 2014, 77 (2), 246–253
35.Ranjani Anandan; Dhanasekaran Dharumadurai; Gopinath Ponnusamy Manogaran, Actinobacteria - Basics and Biotechnological Applications. Intech 2016, 3-37.
36.Liang Wang; Jiawei Yan; Michael J. Wise; Qinghua Liu; James Asenso; Yue Huang; Shiyun Dai; Zhanzhong Liu; Yan Du; Daoquan Tang, Distribution Patterns of Polyphosphate Metabolism Pathway and Its Relationships With Bacterial Durability and Virulence. Frontiers in Microbiology 2018, 9.
37.Yu-Wei Wu; Shih-Hung Yang; Myung Hwangbo; Kung-Hui Chu, Analysis of Zobellella jmnbPolyhydroxybutyrate (PHB) Production from Glycerol under Saline Conditions and Its CRISPR-Cas System. PLOS ONE 2019, 14 (9).
38.M. Fata Moradali; Bernd H. A. Rehm, Bacterial biopolymers: from pathogenesis to advanced materials. Nature Reviews Microbiology 2020, 18, 195–210.
39.Ayesha Algade Amadu; Shuang Qiu; Shijian Ge; Gloria Naa Dzama Addico; Gabriel Komla Ameka; Ziwei Yu; Wenhao Xia; Abdul-Wahab Abbew; Dadong Shao; Pascale Champagne; Sufeng Wang, A review of biopolymer (Poly-β-hydroxybutyrate) synthesis in microbes cultivated on wastewater. Science of The Total Environment 2021, 756.
40.Krijgsheld, K. R.; Van Der Gen, A., Assessment of the impact of the emission of certain organochlorine compounds on the aquatic environment. Chemosphere 1986, 15 (7), 881–893.
41.Thomas P. Niedringhaus; Denitsa Milanova; Matthew B. Kerby; Michael P. Snyder; Annelise E. Barron, Landscape of Next-Generation Sequencing Technologies. Analytical Chemistry 2011, 83 (12), 4327-4341.
42.Yue Wang; Qiuping Yang; Zhimin Wang, The evolution of nanopore sequencing. Frontiers in Genetics 2015, 5, 449.
43.Asieh Aramvash; Narges Gholami Banadkuki; Fatemeh Moazzeni Zavareh; Samira Hajizadeh Turchi, An Environmentally Friendly and Efficient Method for Extraction of PHB Biopolymer with Non-Halogenated Solvents. J Microbiol Biotechnol 2015, 25 (11), 1936-1943
44.Nocek B.; Kochinyan S.; Proudfoot M.; Brown G.; Evdokimova E.; Osipiuk J.; Edwards A. M.; Savchenko A.; Joachimiak A.; Yakunin A. F., Polyphosphate-dependent synthesis of ATP and ADP by the family-2 polyphosphate kinases in bacteria. Proceedings of the National Academy of Sciences of the United States of America 2008, 105 (46), 17730-17735.
45.Ju‑Won Hong; Hun‑Suk Song; Yu‑Mi Moon; Yoon‑Gi Hong; Shashi Kant Bhatia; Hye‑Rim Jung; Tae‑Rim Choi; Soo‑yeon Yang; Hyung‑Yeon Park; Yong‑Keun Choi; Yung‑Hun Yang, Polyhydroxybutyrate production in halophilic marine bacteria. Vibrio proteolyticus isolated from the Korean peninsula. Bioprocess and Biosystems Engineering 2019, 42, 603–610.
46.Kei Motomura; Ryuichi Hirota; Mai Okada; Takeshi Ikeda; Takenori Ishida; Akio Kuroda, A New Subfamily of Polyphosphate Kinase 2 (Class III PPK2) Catalyzes both Nucleoside Monophosphate Phosphorylation and Nucleoside Diphosphate Phosphorylation. Applied and Environmental Microbiology 2014, 80 (8), 2602–2608
47.Puppi D.; Pecorini G.; Chiellini F., Biomedical Processing of Polyhydroxyalkanoates. Bioengineering 2019, 6, 108.
48.Ju-Won Hong; Hun-Suk Song; Yu-Mi Moon; Yoon-Gi Hong; Shashi Kant Bhatia; Hye-Rim Jung; Tae-Rim Choi; Soo-Yeon Yang; Hyung-Yeon Park; Yong-Keun Choi; Yung-Hun Yang, Polyhydroxybutyrate production in halophilic marine bacteria Vibrio proteolyticus isolated from the Korean peninsula. Bioprocess and Biosystems Engineering 2019, 42 (4), 603-610.

49.劉昌振,2011.“煉油廠低鹽廢水回收案例分享”, 台塑石化公司。

無法下載圖示 全文公開日期 2031/07/13 (校內網路)
全文公開日期 2031/07/13 (校外網路)
全文公開日期 2031/07/13 (國家圖書館:臺灣博碩士論文系統)
QR CODE