簡易檢索 / 詳目顯示

研究生: 游鎮名
Chen-ming Yu
論文名稱: 運用數學模型設計之集光系統
Light Collection System Unit Design via Mathematical Modeling Approach
指導教授: 黃忠偉
Allen Jong-Woei Whang
口試委員: 胡能忠
Neng-Chung Hu
邱炳樟
Bin-Chang Chieu
蕭弘清
Horng-Ching Hsiao
趙涵捷
Han-Chieh Chao
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 91
中文關鍵詞: 集光系統稜鏡系統室內照明稜鏡柱
外文關鍵詞: Light collection system, prismatic system, indoor illumination, prismatic cylinder
相關次數: 點閱:179下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 太陽光的利用,對於節約能源而言,是相當有幫助的。為了達到此目的,許多不同利用太陽光的方法已提出,包括稜鏡系統。大部分的稜鏡系統,都是裝在窗戶的內側或外側,做遮陽或改變陽光方向作室內照明之用途。雖然這些系統可以改變太陽光之方向,但對於建築深處之房間,仍無法照明。而建築深處房間之照明對於節能卻是相當重要的。因此,本論文之主要目的為設計一新型集光系統,能裝置於屋頂做集光的動作,且將光導至深處之房間。本系統由數個稜鏡柱所組成,每個稜鏡柱皆包含一個凸圓柱面、一個凹圓柱面以及一個普通鏡面。此稜鏡柱之主要功能,是將一端入射之水平光束,壓縮成較細之光束。此外,我們也提出了一數學模型來模述此稜鏡柱結構,藉此討論光線穿透稜鏡柱之情形。利用此數學模型,我們可以得到數組優化之結果,此外,我們也利用軟體OSLO中之優化功能來驗証此數學模型。另一套光學軟體TracePro則模擬優化後各組稜鏡系統之表現。


    The utilization of sunlight is very helpful to saving resources. Different approaches were used for that purpose, including prismatic systems. Most prismatic systems were positioned in window pane for solar shading and redirection of sunlight. Although these systems could redirect sunlight, they can not illuminate the depth of the room. But the illumination of the deeper room is also very helpful to sunlight utilization. Therefore, the primary idea of this paper is to design a new light collection system which can collect sunlight from roof for indoor illumination. The system is composed of several prismatic cylinders. Each cylinder includes a convex surface and a concave surface, and the system could be positioned on roof. The main function of this cylinder is that when a bundle of horizontal light are incident on convex side, the light beam could be condensed on concave side. Meanwhile, the output light is as horizontal as possible, so that the output light could be incident on the next cylinder. Besides, we develop a mathematical model to describe our prismatic system. The behavior of a light ray through this cylinder is discussed in this model. Some optimized results are found by this model, and the shape of the cylinder is decided by these results. Optical simulation software OSLO has many functions of optimization, and one of them is used to verify our mathematical model. Another software TracePro is used to simulate the performance of our prismatic system.

    第1章 緒論 1.1 研究背景 1.2 研究動機 第2章 綠建築簡介 2.1 綠建築概述 2.2 綠建築九大指標 2.2.1 生物多樣性指標 2.2.2 綠化量指標 2.2.3 基地保水指標 2.2.4 日常節能指標 2.2.5 CO2減量指標 2.2.6 廢棄物減量指標 2.2.7 室內環境指標 2.2.8 水資源指標 2.2.9 污水垃圾改善指標 第3章 稜鏡概述 3.1 稜鏡的工作原理 3.2 稜鏡的類型 3.2.1 色散稜鏡 (Dispersive prisms) 3.2.2 反射稜鏡 (Reflective prisms) 3.3 照明節能稜鏡系統實例 3.3.1 Prismatic Panel 3.3.2 Laser-Cut Panel 3.3.3 Sun-Directing Glass 第4章 透鏡概述 4.1 透鏡種類 4.2 造鏡者公式 第5章 新型集光系統設計法 5.1 新型集光系統 5.2 數學模型分析 5.2.1 光線穿透單一圓柱面 5.2.2 特殊情況 5.2.3 光線穿透雙圓柱面 第6章 分析結果與討論 6.1 水平度分析 6.1.1 數學模型優化結果 6.1.2 光學軟體優化結果 6.2 模擬結果 第7章 進階設計 7.1 進階設計原理 7.2 進階設計方法 7.3 進階設計之模擬結果 第8章 結論與未來展望 8.1 結論 8.2 未來展望

    [1]綠建築-生態環保相關建材網,http://www.fuh3.com.tw/g-build.htm
    [2]郭柏嚴和王耀寬,導光遮陽板與天花板增加居室採光效益評估之研究
    [3]M. Kischkoweit-Lopin, “An overview of daylighting systems,” Solar Energy, 73(2), 77-82 (2002).
    [4]Y. T. Chen, K. K. Chong, T. P. Bligh, L. C. Chen, J. Yunus, K. S. Kannan, B. H. Lim, C. S. Lim, M. A. Alias, N. Bidin, O. Aliman, S. Salehan, S. A. Rezan S. A. H., C. M. Tam, and K. K. Tan, “Non-imaging, focusing heliostat,” Solar Energy 71(3), 155-164 (2001).
    [5]A. Tsangrassoulis, L. Doulos, M. Santamouris, M. Fontoynont, F. Maamari, M. Wilson, A. Jacobs, J. Solomon, A. Zimmerman, W. Pohl, and G. Mihalakakou, “On the energy efficiency of a prototype hybrid daylighting system,” Solar Energy 79(1), 56-64 (2005).
    [6]S. Chirarattananon, S. Chedsiri, and L. Renshen, “Daylighting through light pipes in the tropics,” Solar Energy, 69(4), 331-341 (2000).
    [7]A. Rosemann and H. Kaase, “Lightpipe applications for daylighting systems,” Solar Energy 78(6), 772-780 (2005).
    [8]D. Feuermann and J. M. Gordon, “Solar surgery: Remote fiber optic irradiation with highly concentrated sunlight in lieu of lasers,” Optical Engineering 37(10), 2760-2767 (1998).
    [9]J. Reppel and I. R. Edmonds, “Angle-selective glazing for radiant heat control in buildings: Theory,” Solar Energy 62(3), 245-253 (1998).
    [10]J.-L. Scartezzini, G. Courret, “ Anidolic daylighting systems,” Solar Energy 73(2), 123-135 (2002).
    [11]P. J. Greenup and I. R. Edmonds, “Test room measurements and computer simulations of the micro-light guiding shade daylight redirecting device,“ Solar Energy 76(1-3), 99-109 (2004).
    [12]A. Beck, W. Körner, O. Gross, and J. Fricke, “Making better use of natural light with a light-redirecting double-glazing system,” Solar Energy 66(3), 215-221 (1999).
    [13]S. C. Molteni, G. Courret, B. Paule, L. Michel, and J. L. Scartezzini, “Design of anidolic zenithal lightguides for daylighting of underground spaces,” Solar Energy 69(SUPPLEMENT), 117-129 (2000).
    [14]Z. Kristl, and A. Krainer, “Light wells in residential building as a complementary daylight source,” Solar Energy 65(3), 197-206 (1999).
    [15]Warren J. Smith, “Modern Optical Engineering,” McGraw-Hill, New York 2000
    [16]Michael Laar and Friedrich Wilhelm Grimme, “German developments in daylight guidance systems: an overview,” Building Research & Information 30(4), 282–301(2002)

    QR CODE