簡易檢索 / 詳目顯示

研究生: 劉晉源
Jin-Yuan Liu
論文名稱: 金奈米粒子/植酸鹽奈米複合物製備與表面增強拉曼光譜之應用
Fabrication of Gold Nanoparticles with Inositol Hexaphosphate for Surface-Enhanced Raman Spectroscopy Application
指導教授: 楊銘乾
Ming-Chien Yang
口試委員: 劉定宇
Ting-Yu Liu
陳詩芸
Shih-Yun Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 118
中文關鍵詞: 金奈米粒子植酸鹽表面增強拉曼光譜
外文關鍵詞: gold nanoparticles, inositol hexaphosphate, surface-enhanced Raman scattering
相關次數: 點閱:837下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文改良傳統的檸檬酸鈉熱還原法 (Frens方法)合成出分散性更佳的金奈米粒子 (gold nanoparticles,Au NPs),其關鍵在於還原四氯金酸 (HAuCl4)前的反應液中加入了一低成本、天然、環保的植酸鹽 (inositol hexaphosphate,IP6)。結果顯示,金奈米粒子的粒徑與型態會隨著IP6濃度 (0~32 M)有所變化,將藉由吸收光譜與反應動力學來觀察探討此現象。此外,植酸鹽濃度等於6.5 M時,因其優異的吸附能力,植酸鹽會於金奈米粒子表面形成明顯的植酸鹽層,而組成核 (Au NPs)-殼 (IP6)結構。因此植酸鹽層不但可以使金奈米粒子有更良好的分散效果,也可作為奈米金粒子間的分隔層,使彼此能固定於數奈米的間距 (1~2 nm),形成非常強烈的熱點效應 (hot spots effect),在表面增強拉曼光譜 (surface-enhanced Raman scattering,SERS)檢測上,具有相當大的應用價值,例如微生物 (金黃色葡萄球菌)的生物檢測。


    We have developed a method to synthesize gold nanoparticles (AuNPs) by adding an environment-friendly inositol hexaphosphate (IP6) to the reaction solutions before reducing HAuCl4 through the traditional citrate thermal reduction method (Frens method). The results show that the morphology and the particle size of Au NPs would dramatically be varied with the concentration of IP6 (0~32 M). Furthermore, the core (AuNPs)-shell (IP6 layer) structure was found in 6.5 M IP6 due to the excellent adsorption capability of IP6. It not only makes AuNPs disperse well but also separates particles in a specific distance (1~2 nm) due to the ionic repellence of IP6. The strong hot spots effect was observed in the core-shell structure, which would have a great applicability in the surface-enhanced Raman scattering (SERS) detection, such as microoganism biosensing of Staphylococcus aureus (S. aureus).

    目錄 (Table of Content) 中文摘要 I Abstract II 誌謝 (Acknowledgement) III 目錄 (Table of Content) IV 圖索引 (Figure Index) VII 表索引 (Table Index) XII 名詞縮寫對照表 (Table of Abbreviation) XIII 第壹章 緒論 (Introduction) 1 1.1 研究背景 1 1.2 研究目的 2 第貳章 文獻回顧 (Literature) 3 2.1 金奈米粒子 3 2.1.1 歷史緣起 3 2.1.2 Au NPs之合成 3 2.1.3 Au NPs之結構 6 2.1.4 Au NPs之生成機制 7 2.1.5 Au NPs 光學性質與應用 10 2.1.5.1 定域性表面電將共振 10 2.1.6 表面增強拉曼光譜 14 2.2 植酸鹽 20 第參章 實驗 (Experiment) 22 3.1 實驗材料 22 3.2 實驗設備 24 3.3 實驗流程 27 3.3.1 實驗藍圖 27 3.3.1.1 細部流程 28 3.4 實驗原理及方法 30 3.4.1 合成Au NPs/IP6 30 3.4.2 反應時間與HAuCl4濃度監測 34 3.4.3 植酸鹽探討 37 3.4.3.1 本質效應探討 37 3.4.3.2 SERS效應探討與應用 42 第肆章 結果與討論 (Results and Discussion) 47 4.1 Au NPs/IP6 47 4.1.1 合成Au NPs/IP6 47 4.1.2 Au NPs/IP6之單體消耗 54 4.2 Au NPs 59 4.2.1 合成Au NPs 59 4.2.2 Au NPs之單體消耗 64 4.3 Au NPs/IP6 (金前驅物pH=8.72) 67 4.3.1 合成Au NPs/IP6 (金前驅物pH=8.72) 67 4.3.2 Au NPs/IP6 (金前驅物pH=8.72)之單體消耗 71 4.4 Au NPs/IP6 (金前驅物pH=3.38) 76 4.4.1 合成Au NPs/IP6 (金前驅物pH=3.38) 76 4.4.2 Au NPs/IP6 (金前驅物pH=3.38)之單體消耗 79 4.5 SERS效應與應用探討 83 第伍章 結論 (Conclusion) 90 參考文獻 (Reference) 91 附錄 (Appendix) 98

    [1] R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, "Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles," Science, vol. 277, pp. 1078-1081, 1997.
    [2] G. Schmid and L. F. Chi, "Metal clusters and colloids," Advanced Materials, vol. 10, pp. 515-526, 1998.
    [3] J. H. Hodak, A. Henglein, M. Giersig, and G. V. Hartland, "Laser-Induced Inter-Diffusion in AuAg Core-Shell Nanoparticles," Journal of Physical Chemistry B, vol. 104, pp. 11708-11718, 2000.
    [4] J. H. Hodak, A. Henglein, and G. V. Hartland, "Coherent Excitation of Acoustic Breathing Modes in Bimetallic Core-Shell Nanoparticles," Journal of Physical Chemistry B, vol. 104, pp. 5053-5055, 2000.
    [5] K. R. Brown, D. G. Walter, and M. J. Natan, "Seeding of Colloidal Au Nanoparticle Solutions. 2. Improved Control of Particle Size and Shape," Chemistry of Materials, vol. 12, pp. 306-313, 2000/02/01 1999.
    [6] S. Link and M. A. El-Sayed, "Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods," The Journal of Physical Chemistry B, vol. 103, pp. 8410-8426, 1999/10/01 1999.
    [7] N. R. Jana, L. Gearheart, and C. J. Murphy, "Seed-Mediated Growth Approach for Shape-Controlled Synthesis of Spheroidal and Rod-like Gold Nanoparticles Using a Surfactant Template," Advanced Materials, vol. 13, pp. 1389-1393, 2001.
    [8] S. Nie and S. R. Emory, "Probing single molecules and single nanoparticles by surface-enhanced Raman scattering," Science, vol. 275, pp. 1102-1106, 1997.
    [9] K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single molecule detection using surface-enhanced Raman scattering (SERS)," Physical Review Letters, vol. 78, pp. 1667-1670, 1997.
    [10] H. Yang, Z. Zhang, G. Shen, and R. Yu, "In situ Raman spectra of an NAD+-modified silver electrode at various potentials," Journal of Raman Spectroscopy, vol. 35, pp. 190-194, 2004.
    [11] X. Zhu, H. Yang, N. Wang, R. Zhang, W. Song, Y. Sun, G. Duan, W. Ding, and Z. Zhang, "A facile method for preparation of gold nanoparticles with high SERS efficiency in the presence of inositol hexaphosphate," J Colloid Interface Sci, vol. 342, pp. 571-4, Feb 15 2010.
    [12] J. Turkevich, P. C. Stevenson, and J. Hillier, "A study of the nucleation and growth processes in the synthesis of colloidal gold," Discussions of the Faraday Society, vol. 11, pp. 55-75, 1951.
    [13] J. Turkevich, P. C. Stevenson, and J. Hillier, "The formation of colloidal gold," Journal of Physical Chemistry, vol. 57, pp. 670-673, 1953.
    [14] G. Frens, "Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions," Nature (London) physical science, vol. 241, pp. 20-22, 1973.
    [15] D. A. Handley, "Colloidal Gold:Principles, Methods and Applications, ed. M. A. Hayat (Academic Press, San Diego, 1989)," vol. 1, pp. 1-32, 1989.
    [16] M. Faraday, "The Bakerian Lecture: Experimental Relations of Gold (and Other Metals) to Light," Philosophical Transactions of the Royal Society of London, vol. 147, pp. 145-181, January 1, 1857 1857.
    [17] N. R. Jana, L. Gearheart, and C. J. Murphy, "Seeding Growth for Size Control of 5−40 nm Diameter Gold Nanoparticles," Langmuir, vol. 17, pp. 6782-6786, 2001/10/01 2001.
    [18] L. Pei, K. Mori, and M. Adachi, "Formation Process of Two-Dimensional Networked Gold Nanowires by Citrate Reduction of AuCl4- and the Shape Stabilization," Langmuir, vol. 20, pp. 7837-7843, 2004/08/01 2004.
    [19] C.-H. Kuo, T.-F. Chiang, L.-J. Chen, and M. H. Huang, "Synthesis of Highly Faceted Pentagonal- and Hexagonal-Shaped Gold Nanoparticles with Controlled Sizes by Sodium Dodecyl Sulfate," Langmuir, vol. 20, pp. 7820-7824, 2004/08/01 2004.
    [20] E. Hao, R. C. Bailey, G. C. Schatz, J. T. Hupp, and S. Li, "Synthesis and Optical Properties of “Branched” Gold Nanocrystals," Nano Letters, vol. 4, pp. 327-330, 2004/02/01 2004.
    [21] C. Burda, X. Chen, R. Narayanan, and M. A. El-Sayed, "Chemistry and Properties of Nanocrystals of Different Shapes," Chemical Reviews, vol. 105, pp. 1025-1102, 2005/04/01 2005.
    [22] S. S. Shankar, S. Bhargava, and M. Sastry, "Synthesis of Gold Nanospheres and Nanotriangles by the Turkevich Approach," Journal of Nanoscience and Nanotechnology, vol. 5, pp. 1721-1727, 2005.
    [23] C. J. Murphy, A. M. Gole, S. E. Hunyadi, and C. J. Orendorff, "One-Dimensional Colloidal Gold and Silver Nanostructures," Inorganic Chemistry, vol. 45, pp. 7544-7554, 2006/09/01 2006.
    [24] A. M. Michaels, Jiang, and L. Brus, "Ag Nanocrystal Junctions as the Site for Surface-Enhanced Raman Scattering of Single Rhodamine 6G Molecules," The Journal of Physical Chemistry B, vol. 104, pp. 11965-11971, 2000/12/01 2000.
    [25] L. L. Zhao, L. Jensen, and G. C. Schatz, "Surface-Enhanced Raman Scattering of Pyrazine at the Junction between Two Ag20 Nanoclusters," Nano Letters, vol. 6, pp. 1229-1234, 2006/06/01 2006.
    [26] J. P. Camden, J. A. Dieringer, Y. Wang, D. J. Masiello, L. D. Marks, G. C. Schatz, and R. P. Van Duyne, "Probing the Structure of Single-Molecule Surface-Enhanced Raman Scattering Hot Spots," Journal of the American Chemical Society, vol. 130, pp. 12616-12617, 2008/09/24 2008.
    [27] B. Vlčkova, M. Moskovits, I. Pavel, K. Šiškova, M. Sladkova, and M. Šlouf, "Single-molecule surface-enhanced Raman spectroscopy from a molecularly-bridged silver nanoparticle dimer," Chemical Physics Letters, vol. 455, pp. 131-134, 2008.
    [28] T. A. Taton, C. A. Mirkin, and R. L. Letsinger, "Scanometric DNA Array Detection with Nanoparticle Probes," Science, vol. 289, pp. 1757-1760, September 8, 2000 2000.
    [29] A. G. Tkachenko, H. Xie, D. Coleman, W. Glomm, J. Ryan, M. F. Anderson, S. Franzen, and D. L. Feldheim, "Multifunctional Gold Nanoparticle−Peptide Complexes for Nuclear Targeting," Journal of the American Chemical Society, vol. 125, pp. 4700-4701, 2003/04/01 2003.
    [30] L. N. Lewis, "Chemical catalysis by colloids and clusters," Chemical Reviews, vol. 93, pp. 2693-2730, 1993/12/01 1993.
    [31] Y. Xiong, B. J. Wiley, and Y. Xia, "Nanocrystals with Unconventional Shapes—A Class of Promising Catalysts," Angewandte Chemie International Edition, vol. 46, pp. 7157-7159, 2007.
    [32] V. Amendola and M. Meneghetti, "Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles," Physical Chemistry Chemical Physics, vol. 11, pp. 3805-3821, 2009.
    [33] G. Glaspell, V. Abdelsayed, K. M. Saoud, and M. S. El-Shall, "Vapor-phase synthesis of metallic and intermetallic nanoparticles and nanowires: Magnetic and catalytic properties," pure and applied chemistry, vol. 78, pp. 1667-1689, 2006.
    [34] S. Biggs, P. Mulvaney, C. F. Zukoski, and F. Grieser, "Study of Anion Adsorption at the Gold-Aqueous Solution Interface by Atomic Force Microscopy," Journal of the American Chemical Society, vol. 116, pp. 9150-9157, 1994/10/01 1994.
    [35] Y. Luo, "One-step preparation of gold nanoparticles with different size distribution," Materials Letters, vol. 61, pp. 1039-1041, 2007.
    [36] K. R. Brown and M. J. Natan, "Hydroxylamine Seeding of Colloidal Au Nanoparticles in Solution and on Surfaces," Langmuir, vol. 14, pp. 726-728, 1998/02/01 1998.
    [37] V. K. LaMer and R. H. Dinegar, "Theory, Production and Mechanism of Formation of Monodispersed Hydrosols," Journal of the American Chemical Society, vol. 72, pp. 4847-4854, 1950/11/01 1950.
    [38] S. Kumar, K. S. Gandhi, and R. Kumar, "Modeling of Formation of Gold Nanoparticles by Citrate Method†," Industrial & Engineering Chemistry Research, vol. 46, pp. 3128-3136, 2007/05/01 2006.
    [39] K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, "The Optical Properties of Metal Nanoparticles:  The Influence of Size, Shape, and Dielectric Environment," The Journal of Physical Chemistry B, vol. 107, pp. 668-677, 2003/01/01 2002.
    [40] A. Haes and R. Duyne, "A unified view of propagating and localized surface plasmon resonance biosensors," Analytical and Bioanalytical Chemistry, vol. 379, pp. 920-930, 2004/08/01 2004.
    [41] E. L. Ru and P. Etchegoin, "Chapter 3: Introduction to plasmons and plasmonics," Principles of Surface Enhanced Raman Spectroscopy, 2009.
    [42] Yu, S.-S. Chang, C.-L. Lee, and C. R. C. Wang, "Gold Nanorods:  Electrochemical Synthesis and Optical Properties," The Journal of Physical Chemistry B, vol. 101, pp. 6661-6664, 1997/08/01 1997.
    [43] S. Link, M. B. Mohamed, and M. A. El-Sayed, "Simulation of the Optical Absorption Spectra of Gold Nanorods as a Function of Their Aspect Ratio and the Effect of the Medium Dielectric Constant," The Journal of Physical Chemistry B, vol. 103, pp. 3073-3077, 1999/04/01 1999.
    [44] G. Mie, "Beitrage zur Optik truber Medien, speziell kolloidaler Metallosungen," Annalen der Physik, vol. 330, pp. 377-445, 1908.
    [45] M. Hu, J. Chen, Z.-Y. Li, L. Au, G. V. Hartland, X. Li, M. Marquez, and Y. Xia, "Gold nanostructures: engineering their plasmonic properties for biomedical applications," Chemical Society Reviews, vol. 35, pp. 1084-1094, 2006.
    [46] R. Gans, "Uber die Form ultramikroskopischer Goldteilchen," Annalen der Physik (Leipzig), vol. 37, pp. 881-900, 1912.
    [47] M. Hu, X. Wang, G. V. Hartland, P. Mulvaney, J. P. Juste, and J. E. Sader, "Vibrational Response of Nanorods to Ultrafast Laser Induced Heating:  Theoretical and Experimental Analysis," Journal of the American Chemical Society, vol. 125, pp. 14925-14933, 2003/12/01 2003.
    [48] R. Singh, "C. V. Raman and the Discovery of the Raman Effect," Physics in Perspective, vol. 4, pp. 399-420, 2002/12/01 2002.
    [49] M. Fleischmann, P. J. Hendra, and A. J. McQuillan, "Raman spectra of pyridine adsorbed at a silver electrode," Chemical Physics Letters, vol. 26, pp. 163-166, 1974.
    [50] R. Maher, "SERS Hot Spots," in Raman Spectroscopy for Nanomaterials Characterization, C. S. R. Kumar, Ed., ed: Springer Berlin Heidelberg, 2012, pp. 215-260.
    [51] E. Hao and G. C. Schatz, "Electromagnetic fields around silver nanoparticles and dimers," The Journal of Chemical Physics, vol. 120, pp. 357-366, 2004.
    [52] P. G. Etchegoin and E. C. Le Ru, "A perspective on single molecule SERS: current status and future challenges," Physical Chemistry Chemical Physics, vol. 10, pp. 6079-6089, 2008.
    [53] R. Sardar, T. B. Heap, and J. S. Shumaker-Parry, "Versatile Solid Phase Synthesis of Gold Nanoparticle Dimers Using an Asymmetric Functionalization Approach," Journal of the American Chemical Society, vol. 129, pp. 5356-5357, 2007/05/01 2007.
    [54] C. A. Mirkin, R. L. Letsinger, R. C. Mucic, and J. J. Storhoff, "A DNA-based method for rationally assembling nanoparticles into macroscopic materials," Nature, vol. 382, pp. 607-609, 1996.
    [55] S. Bidault, F. J. Garcia de Abajo, and A. Polman, "Plasmon-Based Nanolenses Assembled on a Well-Defined DNA Template," Journal of the American Chemical Society, vol. 130, pp. 2750-2751, 2008/03/01 2008.
    [56] J. A. Maga, "Phytate: its chemistry, occurrence, food interactions, nutritional significance, and methods of analysis," Journal of Agricultural and Food Chemistry, vol. 30, pp. 1-9, 1982/01/01 1982.
    [57] E. Graf, "Applications of phytic acid," Journal of the American Oil Chemists’ Society, vol. 60, pp. 1861-1867, 1983/11/01 1983.
    [58] H.-F. Yang, J. Feng, Y.-L. Liu, Y. Yang, Z.-R. Zhang, G.-L. Shen, and R.-Q. Yu, "Electrochemical and Surface Enhanced Raman Scattering Spectroelectrochemical Study of Phytic Acid on the Silver Electrode," The Journal of Physical Chemistry B, vol. 108, pp. 17412-17417, 2004/11/01 2004.
    [59] E. Graf and J. W. Eaton, "Antioxidant functions of phytic acid," Free Radical Biology and Medicine, vol. 8, pp. 61-69, 1990.
    [60] T. Notoya, V. Otieno-Alego, and D. P. Schweinsberg, "The corrosion and polarization behaviour of copper in domestic water in the presence of Ca, Mg and Na-Salts of phytic acid," Corrosion Science, vol. 37, pp. 55-65, 1995.
    [61] A. T. Bauman, G. M. Chateauneuf, B. R. Boyd, R. E. Brown, and P. P. N. Murthy, "Conformational inversion processes in phytic acid: NMR spectroscopic and molecular modeling studies," Tetrahedron Letters, vol. 40, pp. 4489-4492, 1999.
    [62] X. Ji, X. Song, J. Li, Y. Bai, W. Yang, and X. Peng, "Size Control of Gold Nanocrystals in Citrate Reduction:  The Third Role of Citrate," Journal of the American Chemical Society, vol. 129, pp. 13939-13948, 2007/11/01 2007.
    [63] J. A. Peck, C. D. Tait, B. I. Swanson, and G. E. Brown Jr, "Speciation of aqueous gold(III) chlorides from ultraviolet/visible absorption and Raman/resonance Raman spectroscopies," Geochimica et Cosmochimica Acta, vol. 55, pp. 671-676, 1991.
    [64] D. Goia and E. Matijević, "Tailoring the particle size of monodispersed colloidal gold," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 146, pp. 139-152, 1999.
    [65] A. Bebot-Brigaud, C. Dange, N. Fauconnier, and C. Gerard, "31P NMR, potentiometric and spectrophotometric studies of phytic acid ionization and complexation properties toward Co2+, Ni2+, Cu2+, Zn2+ and Cd2+," Journal of Inorganic Biochemistry, vol. 75, pp. 71-78, 1999.
    [66] J.F.Moulder, W.F.Stickle, P.E.Sobol, and K.D.Bomben, "Handbook of X-Ray photoelectron spectroscopy," Perkin-Elmer Corporation, 1992.
    [67] C. Stefano, D. Milea, A. Pettignano, and S. Sammartano, "Speciation of phytate ion in aqueous solution. Alkali metal complex formation in different ionic media," Analytical and Bioanalytical Chemistry, vol. 376, pp. 1030-1040, 2003/08/01 2003.
    [68] E. Vasca, S. Materazzi, T. Caruso, O. Milano, C. Fontanella, and C. Manfredi, "Complex formation between phytic acid and divalent metal ions: a solution equilibria and solid state investigation," Analytical and Bioanalytical Chemistry, vol. 374, pp. 173-178, 2002/09/01 2002.
    [69] Z. He, C. W. Honeycutt, T. Zhang, and P. M. Bertsch, "Preparation and FT–IR Characterization of Metal Phytate Compounds Trade or manufacturer's names mentioned in the paper are for information only and do not constitute endorsement, recommendation, or exclusion by the USDA–ARS. PMB was supported in part by Financial Assistance Award Number DE-FC09-96SR18546 from the U.S. DOE to the University of Georgia Research Foundation," J. Environ. Qual., vol. 35, pp. 1319-1328, 2006/7 2006.
    [70] R. M. Jarvis and R. Goodacre, "Discrimination of Bacteria Using Surface-Enhanced Raman Spectroscopy," Analytical Chemistry, vol. 76, pp. 40-47, 2004/01/01 2003.

    QR CODE