簡易檢索 / 詳目顯示

研究生: 周賀龍
Helong Zhou
論文名稱: 高效的核共享卷積類神經網路
Efficient Kernel Sharing Convolutional Neural Networks
指導教授: 陳郁堂
Yie-Tarng Chen
口試委員: 方文賢
Wen-Hsien Fang
吳乾彌
Chen-Mie Wu
林銘波
Ming-Bo Lin
陳省隆
Hsing-Lung Chen
呂政修
Jenq-Shiou Leu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 33
中文關鍵詞: 精簡卷積核模型壓縮和提速圖像分類深度學習
外文關鍵詞: compact convolution filters, model compression and acceleration, image classification, deep learning
相關次數: 點閱:208下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 類神經網絡模型的壓縮近年來受到了越來越多的關注。為了減緩卷積核冗餘的問題,這篇論文提出了新的卷積結構:共享核卷積和加權共享核卷積,後者在前者的基礎上增加了額外的共享權重來滿足不同輸入通道訊號間的差異性。傳統的卷積中,每個輸入通道都有各自的卷積核去進行卷積,這樣可能會導致卷積核的冗餘。考慮到此情況,本文提出的兩個架構均將不同的輸入通道訊號進行分組卷積核共享,同一組中來自不同的通道的訊號會共享同一個卷積核。這樣以來,卷積核的數目會相應減少,從而可降低模型參數的大小和提高預測的速度。另外,我們將加權共享卷積核結構和深度可分離卷積結構結合產生一個高度壓縮的網路架構。我們分別在ImageNet分類任務,CIFAR-100,Caltech-256數據集上面進行了大量的實驗,并與最先進的壓縮方法進行了比較,結果顯示我們的架構在參數量和計算代價的壓縮方面均具有廣泛的效益。


    Increasing focus has been put on pursuing computation efficient convolutional neural network (CNN) models. To lessen the redundancy of convolutional kernels, this paper proposes two new convolutional structures, i.e., kernel sharing convolution (KSC) and weighted kernel sharing convolution (WKSC), where an extra weighting is imposed for each input in WKSC to manifest the diversity of input channels. Inspired by the fact that in traditional convolution, each input channel has its respective kernel to convolute with, which may lead to redundant kernels, both of the proposed schemes gather the inputs using the same kernel together, so the inputs in each group can share the same convolutional kernel. As a consequence, the number of kernels can be greatly reduced, leading to a reduction of model parameters and the speedup of inference. Moreover, WKSC is also combined with depthwise separable convolutions, resulting in a highly compressed architecture. Extensive experiments on CIFAR-100, Caltech-256 and ImageNet classification demonstrate the effectiveness of the new approach in both computation cost and the parameters required compared with the state-of-the-art works.

    1. Introduction . . . . . . . . . . . . 1 2. Related work . . . . . . . . . . . . 3 3. Proposed Approach . . . . . . . . . . . . 7 3.1 Traditional Convolution (TC) . . . . . . . . . . . . 7 3.2 Kernel Sharing Convolution (KSC) . . . . . . . . . . . . . . . . 8 3.3 Weighted Kernel Sharing Convolution (WKSC) . . . . . . . . . . . 9 3.4 Width Multiplier . . . . . . . . . . . . .. . . . . 11 4. Experimental Results and Discussions . . . . . . . . . . . 12 4.1 Performance Analysis . . . . . .. . . . 12 4.1.1 CIFAR-100 . . . . . . . . . . . . 12 4.1.2 ILSVRC 2012 . . . . . . . . . . . .. . . 14 4.2 Comparison with the State-of-the-art Models . . . . . . . . . . . . 16 5. Conclusion . . . . . . . . . . . 21 References . . . . . . . . . . . . . 22

    [1] T. Zhang, G. J. Qi, B. Xiao, and J. Wang, \Interleaved group convolutions for
    deep neural networks," in ICCV, 2017.
    [2] K. Simonyan and A. Zisserman, \Very deep convolutional networks for large-
    scale image recognition," in ICLR, 2015.
    [3] S. Xie, R. Girshick, P. Dollar, Z. Tu, and K. He, \Aggregated residual trans-
    formations for deep neural networks," in CVPR, pp. 5987{5995, 2017.
    [4] K. He, X. Zhang, S. Ren, and J. Sun, \Deep residual learning for image recog-
    nition," in CVPR, pp. 770{778, 2016.
    [5] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
    M. Andreetto, and H. Adam, \Mobilenets: Ecient convolutional neural net-
    works for mobile vision applications," arXiv preprint arXiv:1704.04861, 2017.
    [6] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and
    K. Keutzer, \Squeezenet: Alexnet-level accuracy with 50x fewer parameters
    and< 0.5 mb model size," arXiv preprint arXiv:1602.07360, 2016.
    [7] A. Krizhevsky, I. Sutskever, and G. E. Hinton, \Imagenet classi cation with
    deep convolutional neural networks," in NIPS, pp. 1097{1105, 2012.
    [8] S. Srinivas and R. V. Babu, \Data-free parameter pruning for deep neural
    networks," in BMVC, 2015.
    [9] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, \Pruning lters for
    ecient convnets," arXiv preprint arXiv:1608.08710, 2016.
    [10] S. Han, J. Pool, J. Tran, and W. Dally, \Learning both weights and connections
    for ecient neural network," in NIPS, pp. 1135{1143, 2015.
    [11] S. Han, H. Mao, and W. J. Dally, \Deep compression: Compressing deep neural
    networks with pruning, trained quantization and hu man coding," in ICLR,
    2016.
    [12] Y. Gong, L. Liu, M. Yang, and L. Bourdev, \Compressing deep convolutional
    networks using vector quantization," arXiv preprint arXiv:1412.6115, 2014.
    [13] J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng, \Quantized convolutional
    neural networks for mobile devices," in CVPR, pp. 4820{4828, 2016.
    [14] V. Vanhoucke, A. Senior, and M. Z. Mao, \Improving the speed of neural
    networks on cpus," in Proc. Deep Learning and Unsupervised Feature Learning
    NIPS Workshop, vol. 1, p. 4, Citeseer, 2011.
    [15] G. Hinton, O. Vinyals, and J. Dean, \Distilling the knowledge in a neural net-
    work," in NIPS Deep Learning and Representation Learning Workshop, 2014.
    [16] T. Chen, I. Goodfellow, and J. Shlens, \Net2net: Accelerating learning via
    knowledge transfer," in ICLR, 2016.
    [17] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, and Y. Bengio,
    \Fitnets: Hints for thin deep nets," in ICLR, 2015.
    [18] M. Jaderberg, A. Vedaldi, and A. Zisserman, \Speeding up convolutional neural
    networks with low rank expansions," in BMVC, 2014.
    [19] C. Tai, T. Xiao, Y. Zhang, X. Wang, et al., \Convolutional neural networks
    with low-rank regularization," in ICLR, 2016.
    [20] R. Rigamonti, A. Sironi, V. Lepetit, and P. Fua, \Learning separable lters,"
    in CVPR, pp. 2754{2761, 2013.
    [21] W. Shang, K. Sohn, D. Almeida, and H. Lee, \Understanding and improving
    convolutional neural networks via concatenated recti ed linear units," in ICML,
    pp. 2217{2225, 2016.
    [22] L. Sifre and P. Mallat, Rigid-motion scattering for image classi cation. PhD
    thesis, Citeseer, 2014.
    [23] F. Chollet, \Xception: Deep learning with depthwise separable convolutions,"
    in CVPR, 2017.
    [24] X. Zhang, X. Zhou, M. Lin, and J. Sun, \Shuenet: An extremely ecient con-
    volutional neural network for mobile devices," arXiv preprint arXiv:1707.01083,
    2017.
    [25] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, \Learning representations
    by back-propagating errors," nature, vol. 323, no. 6088, p. 533, 1986.
    [26] A. Krizhevsky and G. Hinton, \Learning multiple layers of features from tiny
    images," Technical report, 2009.
    [27] K. He, X. Zhang, S. Ren, and J. Sun, \Delving deep into recti ers: Surpassing
    human-level performance on imagenet classi cation," in ICCV, pp. 1026{1034,
    2015.
    [28] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, \Imagenet: A
    large-scale hierarchical image database," in CVPR, pp. 248{255, 2009.
    [29] G. Grin, A. Holub, and P. Perona, \Caltech-256 object category dataset,"
    Technical Report 7694, 2007.
    [30] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
    \Dropout: A simple way to prevent neural networks from over tting," The
    Journal of Machine Learning Research, vol. 15, no. 1, pp. 1929{1958, 2014.

    QR CODE