簡易檢索 / 詳目顯示

研究生: sunny hy
sunny - hy
論文名稱: The Investigation on Instability of Lithium-rich Layered-oxide Cathode Material
The Investigation on Instability of Lithium-rich Layered-oxide Cathode Material
指導教授: 黃炳照
Bing-Joe Hwang
口試委員: Wei-Nien Su
Wei-Nien Su
Nae-Lih Wu
Nae-Lih Wu
Ming-Yao Cheng
Ming-Yao Cheng
She-Huang Wu
She-Huang Wu
Ching-Hsiang Chen
Ching-Hsiang Chen
Fu-Ming Wang
Fu-Ming Wang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 156
中文關鍵詞: Lithium batterylithium-richcathodeXASRamanSERS
外文關鍵詞: Lithium battery, lithium-rich, cathode, XAS, Raman, SERS
相關次數: 點閱:203下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

The recent changes across transportation, communication, health, and now wearable technology represent a significant paradigm shift in which electronic devices are ubiquitous to all facets of daily human life. Although considerable progress have been made towards the different technologies, the power sources of these devices, mainly rechargeable lithium ion batteries, have seen a slower progression in advancement due to several factors that include a lack of commercially available high energy-dense materials. This limitation, among others, proves to be the bottleneck across all technology. The lithium-rich high-capacity cathode material Li[NixLi1/3-2x/3Mn2/3-x/3]O2 are of high interest as the next generation of cathode materials due to it’s rechargeable capacity and energy density about twice that of current commercial cathode materials. Elucidation of multi-level surface and bulk reactions within the lithium-rich materials and their connection within the entire battery system would give deeper understanding to the materials electrochemistry.
This dissertation describes the development and utilization of advanced characterization techniques to understand the surface and bulk mechanisms of the lithium-rich high-capacity cathode materials Li[NixLi1/3-2x/3Mn2/3-x/3]O2. This work identified several surface phenomenons including the changes from the surface layered structure to a lithium transport-inhibiting spinel structure with increased number of electrochemical cycling and surface reactions. Surface studies on the lithium-excess/graphite full-cell battery identified the evolution of Li2O during charging and its effect on the overall battery environment. Using in situ surface-enhanced Raman spectroscopy via SiO2-encapsulated Au nanoparticles, Investigation of the first electrochemical cycling shows that Li2O will form during the oxygen-activation plateau and subsequently consumed towards the end of the plateau. The reaction of Li2O leads to LiOH formation on the graphite anode and changes in the battery environment that promote Li2CO3 precipitation onto the Li-excess cathode. During the oxygen activation plateau, activated oxygen species are formed that will hybridize with Mn causing the layered-to-spinel transformation and subsequent decrease in overall hybridization causing instability. The presents of Ni alleviates the subsequent decrease in hybridization and shows milder layered-to-spinel transformation due to the preferred hybridization of Ni with the activated oxygen species while maintaining Mn as a spectator metal. This result underlines the strong relationship between Ni and Mn in stabilizing the lithium-rich material. To mitigate the dilapidating surface formations and surface reconstruction, atomic-layer-deposited TiO2 coating on Li-excess and graphite electrodes were employed as a protection layer. Electrochemical studies showed improvements on the rate capability if TiO2 coating was applied to the cathode side and a decrease if applied to the anode side. While initial stability was found during cycling, TiO2-coating on a single electrode generally lead to lower stability compared to non-coated electrodes when cycled up to 100 cycles at 55 °C versus. TiO2 coating on both electrodes showed to be the most stable under the same condition due to protection from surface reactions on both electrodes. The multifaceted analysis of bulk and surface phenomenon has led to an increased understanding of the lithium-rich high-capacity cathode materials.


The recent changes across transportation, communication, health, and now wearable technology represent a significant paradigm shift in which electronic devices are ubiquitous to all facets of daily human life. Although considerable progress have been made towards the different technologies, the power sources of these devices, mainly rechargeable lithium ion batteries, have seen a slower progression in advancement due to several factors that include a lack of commercially available high energy-dense materials. This limitation, among others, proves to be the bottleneck across all technology. The lithium-rich high-capacity cathode material Li[NixLi1/3-2x/3Mn2/3-x/3]O2 are of high interest as the next generation of cathode materials due to it’s rechargeable capacity and energy density about twice that of current commercial cathode materials. Elucidation of multi-level surface and bulk reactions within the lithium-rich materials and their connection within the entire battery system would give deeper understanding to the materials electrochemistry.
This dissertation describes the development and utilization of advanced characterization techniques to understand the surface and bulk mechanisms of the lithium-rich high-capacity cathode materials Li[NixLi1/3-2x/3Mn2/3-x/3]O2. This work identified several surface phenomenons including the changes from the surface layered structure to a lithium transport-inhibiting spinel structure with increased number of electrochemical cycling and surface reactions. Surface studies on the lithium-excess/graphite full-cell battery identified the evolution of Li2O during charging and its effect on the overall battery environment. Using in situ surface-enhanced Raman spectroscopy via SiO2-encapsulated Au nanoparticles, Investigation of the first electrochemical cycling shows that Li2O will form during the oxygen-activation plateau and subsequently consumed towards the end of the plateau. The reaction of Li2O leads to LiOH formation on the graphite anode and changes in the battery environment that promote Li2CO3 precipitation onto the Li-excess cathode. During the oxygen activation plateau, activated oxygen species are formed that will hybridize with Mn causing the layered-to-spinel transformation and subsequent decrease in overall hybridization causing instability. The presents of Ni alleviates the subsequent decrease in hybridization and shows milder layered-to-spinel transformation due to the preferred hybridization of Ni with the activated oxygen species while maintaining Mn as a spectator metal. This result underlines the strong relationship between Ni and Mn in stabilizing the lithium-rich material. To mitigate the dilapidating surface formations and surface reconstruction, atomic-layer-deposited TiO2 coating on Li-excess and graphite electrodes were employed as a protection layer. Electrochemical studies showed improvements on the rate capability if TiO2 coating was applied to the cathode side and a decrease if applied to the anode side. While initial stability was found during cycling, TiO2-coating on a single electrode generally lead to lower stability compared to non-coated electrodes when cycled up to 100 cycles at 55 °C versus. TiO2 coating on both electrodes showed to be the most stable under the same condition due to protection from surface reactions on both electrodes. The multifaceted analysis of bulk and surface phenomenon has led to an increased understanding of the lithium-rich high-capacity cathode materials.

TABLE OF CONTENTS List of symbols4 List of Figures4 List of Tables9 Abstract1 Chapter 1: Introduction and background3 1.1:Electrochemical Cells3 1.2 Positive Electrode Materials7 1.2.1 layered compounds LiMO28 1.2.2 Olivine compounds LiMPO49 1.2.2 Spinel compounds Li2Mn2O410 1.3 Lithium-Rich High-Capacity Cathode Materials11 1.3.1 Structure13 1.3.2 Mechanisms and performance15 1.4 Objectives And Overview18 Chapter 2: Material Synthesis and Characterization20 2.1 Coprecipitation Synthesis20 2.1.1 Experimental Set-Up21 2.2 Raman Spectroscopy23 2.2.1 Carbon-based materials25 2.2.2 Transition-metal oxide materials25 2.2.2 Surface-enhanced Raman spectroscopy (SERS)26 2.2.3 Au@SiO2 nanoparticle synthesis27 2.2.4 Experimental considerations29 2.3 X-ray Powder Diffraction31 2.4 X-ray Absorption Spectroscopy32 2.2.4 Experimental considerations33 Chapter 3: Direct In situ Observation of Li2O Evolution on Li-Rich High-Capacity Cathode Material Li[NixLi(1-2x)/3Mn(2-x)/3]O2 (0≤x≤0.5)35 3.1 Experiments37 3.1.1 Raw Materials37 3.1.2 Synthesis of the Lithium-Rich Cathode LLNMO37 3.1.3 Characterization37 3.1.4 Electrode Fabrication38 3.1.5 Electrochemical Measurements38 3.1.6 In situ SERS39 3.1.7 Raman Mapping39 3.2 Results39 3.2.1 Raman, XRD, and SEM Characterization39 3.2.2 Electrochemical Measurements41 3.2.3 In situ SERS43 3.3 Discussion50 3.4 Conclusions58 Chapter 4: Soft X-ray Absorption Spectroscopic and Raman Studies on Li1.2Ni0.2Mn0.6O2 for Lithium-Ion Batteries60 4.2 Experiments61 4.3 Results62 4.3.1 Electrochemical Cycling62 4.3.2 Raman63 4.3.3 Ni and Mn L-edges65 4.3.4 O K-edges69 4.4. Conclusion75 Chapter 5: Understanding the Role of Ni in Stabilizing Lithium-Rich High-Capacity Cathode Material Li[NixLi(1-2x)/3Mn(2-x)/3]O2 (0≤x≤0.5)76 5.1 Experiments77 5.1.1 synthesis77 5.1.2 Hard XAS77 5.1.3 XRD78 5.1.4 Soft XAS79 5.2 Results79 5.2.1 Long and Local structure of LLNMO powder79 5.2.2 Electronic Structural Changes of LLNMO85 5.3 Discussion92 5.4 Conclusions96 Chapter 6: Investigation of atomic layer deposited TiO2 coating on MCMB / Li1.2Ni0.2Mn0.6O2 full cell97 6.1 Experimental98 6.1.1 Synthesis of the Lithium-Rich Cathode LLNMO98 6.1.2 Electrode fabrication98 6.1.3 Atomic Layer Deposition on Electrode98 6.1.4 Electrochemical Measurements99 6.1.5 Characterization99 6.2 Results and Discussion100 6.3 Conclusion113 Chapter 7: Summary and perspective114 7.1 Summary114 7.2 Perspective114 7.2.1 In situ neutron powder diffraction114 Appendix114 A.1-supplementary to chapter 3114 A.2-supplementary to chapter 4123 A.3-supplementary to chapter 5125 References132

J. B. Goodenough and K.-S. Park, Journal of the American Chemical Society, 2013, 135, 1167-1176.
2.M. S. Whittingham, Science, 1976, 192, 1126.
3.J. Yamaki, M. Wakihara and O. Yamamoto, Lithium Ion Batteries - Fundamentals and Performance, 1998.
4.K. Mizushima, P. C. Jones, P. J. Wiseman and J. B. Goodenough, Materials Research Bulletin, 1980, 15, 783-789.
5.R. Yazami and P. Touzain, J. Power Sources, 1983, 9, 365.
6.J. B. Goodenough and Y. Kim, Chemistry of Materials, 2010, 22, 587-603.
7.B. Xu, D. Qian, Z. Wang and Y. S. Meng, Materials Science and Engineering: R: Reports, 2012, 73, 51-65.
8.T. Ohzuku, M. Nagayama, K. Tsuji and K. Ariyoshi, Journal of Materials Chemistry, 2011, 21, 10179.
9.T. Ohzuku and A. Ueda, Solid State Ionics, 1994, 69, 201-211.
10.P. Verma, P. Maire and P. Novak, Electrochimica Acta, 2010, 55, 6332-6341.
11.Z. Chen, Y. Qin, K. Amine and Y. K. Sun, Journal of Materials Chemistry, 2010, 20, 7606.
12.J. B. Goodenough, H. Y. P. Hong and J. A. Kafalas, Mater. Res. Bull., 1976, 11, 203.
13.J. B. Goodenough, D. G. Wickham and W. J. Croft, J. Appl. Phys., 1958, 29, 382.
14.J. B. Goodenough and A. L. Loeb, Phys. Rev., 1955, 98, 391.
15.R. Gupta and A. A. Manthiram, J. Solid State Chem., 1996, 121, 483.
16.Japan Pat., 1989293, 1985.
17.T. Ohzuku and Y. Makimura, Chemistry Letters, 2001, 744-745.
18.T. Ohzuku and Y. Makimura, Chemistry Letters, 2001, 642-643.
19.A. K. Padhi, K. S. Nanjundaswamy and J. B. Goodenough, Journal of The Electrochemical Society, 1997, 144, 1188-1194.
20.A. K. Padhi, K. S. Nanjundaswamy, C. Masquelier, S. Okada and J. B. Goodenough, Journal of The Electrochemical Society, 1997, 144, 1609-1613.
21.D. Lepage, C. Michot, G. Liang, M. Gauthier and S. B. Schougaard, Angewandte Chemie International Edition, 2011, 50, 6884-6887.
22.K. Zaghib, M. Dontigny, A. Guerfi, P. Charest, I. Rodrigues, A. Mauger and C. M. Julien, J. Power Sources, 2011, 196, 3949.
23.H. A. Jahn and E. Teller, Proc. R. Soc. London, Ser. A, 1937, 161, 220.
24.D. Aurbach, M. D. Levi, K. Gamulski, B. Markovsky, G. Salitra, E. Levi, U. Heider, L. Heider and R. Oesten, Journal of Power Sources, 1999, 81–82, 472-479.
25.Y. Xia, Y. Zhou and M. Yoshio, Journal of The Electrochemical Society, 1997, 144, 2593-2600.
26.J. H. Kim, S. T. Myung, C. S. Yoon, S. G. Kang and Y. K. Sun, Chemistry of Materials, 2004, 16, 906-914.
27.J. Molenda, J. Marzec, K. Świerczek, W. Ojczyk, M. Ziemnicki, M. Molenda, M. Drozdek and R. Dziembaj, Solid State Ionics, 2004, 171, 215-227.
28.T. Ohzuku, S. Takeda and M. Iwanaga, Journal of Power Sources, 1999, 81–82, 90-94.
29.H. Yu and H. Zhou, The Journal of Physical Chemistry Letters, 2013, 4, 1268-1280.
30.M. H. Rossouw and M. M. Thackeray, Mater. Res. Bull., 1991, 26, 463.
31.M. H. Rossouw, D. C. Liles and M. M. Thackeray, J. Solid State Chem., 1993, 104, 464.
32.P. Kalyani, S. Chitra, T. Mohan and S. Gopukumar, J. Power Sources, 1999, 80, 103.
33.M. M. Thackeray, C. S. Johnson, J. T. Vaughey, N. Li and S. A. Hackney, Journal of Materials Chemistry, 2005, 15, 2257.
34.Z. Lu, D. D. MacNeil and J. R. Dahn, Electrochemical and Solid-State Letters, 2001, 4, A191.
35.S. Meng, G. Ceder, C. P. Grey, W.-S. Yoon, M. Jiang, J. Bre ́ger and Y. Shao-Horn, Chem. Mater., 2005.
36.K. A. Jarvis, Z. Deng, L. F. Allard, A. Manthiram and P. J. Ferreira, Chemistry of Materials, 2011, 23, 3614-3621.
37.H. Yu, R. Ishikawa, Y. G. So, N. Shibata, T. Kudo, H. Zhou and Y. Ikuhara, Angew Chem Int Ed Engl, 2013, 52, 5969-5973.
38.J. Bareño, M. Balasubramanian, S. H. Kang, J. G. Wen, C. H. Lei, S. V. Pol, I. Petrov and D. P. Abraham, Chemistry of Materials, 2011, 23, 2039-2050.
39.J. Bareno, C. H. Lei, J. G. Wen, S. H. Kang, I. Petrov and D. P. Abraham, Advanced Materials, 2010, 22, 1122-1127.
40.D. Mohanty, A. Huq, E. A. Payzant, A. S. Sefat, J. Li, D. P. Abraham, I. I. I. D. L. Wood and C. Daniel, Chemistry of Materials, 2013, 130912090810003.
41.E. McCalla, C. M. Lowartz, C. R. Brown and J. R. Dahn, Chemistry of Materials, 2013, 25, 912-918.
42.C. S. Johnson, J. S. Kim, C. Lefief, N. Li, J. T. Vaughey and M. M. Thackeray, Electrochemistry Communications, 2004, 6, 1085-1091.
43.E. McCalla, A. W. Rowe, J. Camardese and J. R. Dahn, Chemistry of Materials, 2013, 130625132434003.
44.Z. Lu and J. R. Dahn, Journal of The Electrochemical Society, 2002, 149, A815.
45.A. R. Armstrong, M. Holzapfel, P. Novak, C. S. Johnson, S.-H. Kang, M. M. Thackeray and P. G. Bruce, Journal of the American Chemical Society, 2006, 128, 8694-8698.
46.N. Tran, L. Croguennec, M. Ménétrier, F. Weill, P. Biensan, C. Jordy and C. Delmas, Chemistry of Materials, 2008, 20, 4815-4825.
47.N. Yabuuchi, K. Yoshii, S.-T. Myung, I. Nakai and S. Komaba, Journal of the American Chemical Society, 2011, 133, 4404-4419.
48.J. Hong, H.-D. Lim, M. Lee, S.-W. Kim, H. Kim, S.-T. Oh, G.-C. Chung and K. Kang, Chemistry of Materials, 2012, 24, 2692-2697.
49.B. Xu, C. R. Fell, M. Chi and Y. S. Meng, Energy & Environmental Science, 2011, 4, 2223.
50.M. Sathiya, K. Ramesha, G. Rousse, D. Foix, D. Gonbeau, A. S. Prakash, M. L. Doublet, K. Hemalatha and J. M. Tarascon, Chemistry of Materials, 2013, 25, 1121-1131.
51.M. Sathiya, G. Rousse, K. Ramesha, C. P. Laisa, H. Vezin, M. T. Sougrati, M. L. Doublet, D. Foix, D. Gonbeau, W. Walker, A. S. Prakash, M. Ben Hassine, L. Dupont and J. M. Tarascon, Nat Mater, 2013, 12, 827-835.
52.A. Ito, Y. Sato, T. Sanada, M. Hatano, H. Horie and Y. Ohsawa, Journal of Power Sources, 2011, 196, 6828-6834.
53.H. Koga, L. Croguennec, M. Menetrier, K. Douhil, S. Belin, L. Bourgeois, E. Suard, F. Weill and C. Delmas, Journal of The Electrochemical Society, 2013, 160, A786-A792.
54.H. Koga, L. Croguennec, M. Menetrier, P. Mannessiez, F. Weill and C. Delmas, Journal of Power Sources, 2013, 236, 250-258.
55.K. J. Carroll, D. Qian, C. Fell, S. Calvin, G. M. Veith, M. Chi, L. Baggetto and Y. S. Meng, Physical chemistry chemical physics : PCCP, 2013, 15, 11128-11138.
56.J. R. Croy, K. G. Gallagher, M. Balasubramanian, B. R. Long and M. M. Thackeray, Journal of The Electrochemical Society, 2014, 161, A318-A325.
57.D. Kim, J. R. Croy and M. M. Thackeray, Electrochemistry Communications, 2013, 36, 103-106.
58.K. G. Gallagher, J. R. Croy, M. Balasubramanian, M. Bettge, D. P. Abraham, A. K. Burrell and M. M. Thackeray, Electrochemistry Communications, 2013, 33, 96-98.
59.J. R. Croy, K. G. Gallagher, M. Balasubramanian, Z. Chen, Y. Ren, D. Kim, S.-H. Kang, D. W. Dees and M. M. Thackeray, The Journal of Physical Chemistry C, 2013, 117, 6525-6536.
60.J. R. Croy, D. Kim, M. Balasubramanian, K. Gallagher, S.-H. Kang and M. M. Thackeray, Journal of The Electrochemical Society, 2012, 159, A781.
61.B. J. Hwang, C. J. Wang, C. H. Chen, Y. W. Tsai and M. Venkateswarlu, Journal of Power Sources, 2005, 146, 658-663.
62.L. Zhang, B. Wu, N. Li, D. Mu, C. Zhang and F. Wu, Journal of Power Sources, 2013, 240, 644-652.
63.D. Luo, G. Li, X. Guan, C. Yu, J. Zheng, X. Zhang and L. Li, Journal of Materials Chemistry A, 2013, 1, 1220.
64.H. Koga, L. Croguennec, P. Mannessiez, M. Menetrier, F. Weill, L. Bourgeois, M. Duttine, E. Suard and C. Delmas, The Journal of Physical Chemistry C, 2012, 116, 13497-13506.
65.J. Liu, L. Chen, M. Hou, F. Wang, R. Che and Y. Xia, Journal of Materials Chemistry, 2012, 22, 25380.
66.F. Zhou, X. Zhao, A. van Bommel, A. W. Rowe and J. R. Dahn, Chemistry of Materials, 2010, 22, 1015-1021.
67.G. Z. Wei, X. Lu, F. S. Ke, L. Huang, J. T. Li, Z. X. Wang, Z. Y. Zhou and S. G. Sun, Adv Mater, 2010, 22, 4364-4367.
68.D. K. Lee, S. H. Park, K. Amine, H. J. Bang, J. Parakash and Y. K. Sun, Journal of Power Sources, 2006, 162, 1346-1350.
69.G. Turrell, G. Turrel and J. Corset, Raman Microscopy, Developments and Applications, 1996.
70.R. Baddour-Hadjean and J.-P. Pereira-Ramos, Chemical Reviews, 2009, 110, 1278-1319.
71.J.-C. Panitz, P. Novak and O. Haas, Applied Spectroscopy, 2001, 55, 7.
72.L. Hardwick, H. Buqa and P. Novak, Solid State Ionics, 2006, 177, 2801-2806.
73.L. J. Hardwick, P. W. Ruch, M. Hahn, W. Scheifele, R. Kotz and P. Novak, Journal of Physics and Chemistry of Solids, 2008, 69, 1232-1237.
74.G. Singh, W. C. West, J. Soler and R. S. Katiyar, Journal of Power Sources, 2012, 218, 34-38.
75.V. Stancovski and S. Badilescu, Journal of Applied Electrochemistry, 2013, 1-21.
76.T. Nishi, H. Nakai and A. Kita, Journal of The Electrochemical Society, 2013, 160, A1785-A1788.
77.P. Lanz, C. Villevieille and P. Novak, Electrochimica Acta, 2013, 109, 426-432.
78.A. J. J. Jebaraj and D. A. Scherson, Accounts of Chemical Research, 2013, 46, 1192-1205.
79.F. Tuinstra and J. L. Koenig, J. Chem. Phys., 1976, 53, 1126.
80.K. Dokko, M. Mohamedi, N. Anzue, T. Itoh and I. Uchida, J. Mater. Chem., 2002, 12, 3688.
81.K. Dokko, N. Anzue, M. Mohamedi, T. Itoh and I. Uchida, Electrochem. Commun., 2004, 6, 384.
82.S. J. Hwang, H. S. Park, J. H. Choy, G. Campet, J. Portier, C. W. Kwon and J. Etourneau, Electrochem. Solid-State Lett., 2001, 4, A213.
83.G. Li, H. Li, Y. Mo, X. Huang and L. Chen, Chemical Physics Letters, 2000, 330, 249-254.
84.G. Li, H. Li, Y. Mo, L. Chen and X. Huang, Journal of Power Sources, 2002, 104, 190-194.
85.H. Li, Y. Mo, N. Pei, X. Xu, X. Huang and L. Chen, The Journal of Physical Chemistry B, 2000, 104, 8477-8480.
86.S. A. Freunberger, Y. Chen, Z. Peng, J. M. Griffin, L. J. Hardwick, F. Bardé, P. Novák and P. G. Bruce, Journal of the American Chemical Society, 2011, 133, 8040-8047.
87.Z. Peng, S. A. Freunberger, L. J. Hardwick, Y. Chen, V. Giordani, F. Barde, P. Novak, D. Graham, J.-M. Tarascon and P. G. Bruce, Angewandte Chemie International Edition, 2011, 50, 6351-6355.
88.Z. Peng, S. A. Freunberger, Y. Chen and P. G. Bruce, Science, 2012, 337, 563-566.
89.J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, Y. Wu de, B. Ren, Z. L. Wang and Z. Q. Tian, Nature, 2010, 464, 392-395.
90.J.-F. Li, S.-B. Li, J. R. Anema, Z.-L. Yang, Y.-F. Huang, Y. Ding, Y.-F. Wu, X.-S. Zhou, D.-Y. Wu, B. Ren, Z.-L. Wang and Z.-Q. Tian, Applied Spectroscopy, 2011, 65, 620-626.
91.G. Frens, Nature Phys. Sci., 1973, 20-22.
92.C. M. Burba, J. M. Palmer and B. S. Holinsworth, Journal of Raman Spectroscopy, 2009, 40, 225-228.
93.H. Rietveld, Journal of Applied Crystallography, 1969, 2, 65-71.
94.S. Hy, F. Felix, J. Rick, W. N. Su and B. J. Hwang, J Am Chem Soc, 2014, 157, 999-1007.
95.Z. Peng, S. A. Freunberger, L. J. Hardwick, Y. Chen, V. Giordani, F. Barde, P. Novak, D. Graham, J. M. Tarascon and P. G. Bruce, Angew Chem Int Ed Engl, 2011, 50, 6351-6355.
96.D. Y. W. Yu and K. Yanagida, Journal of The Electrochemical Society, 2011, 158, A1015.
97.J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang and Z. Q. Tian, Nature, 2010, 464, 392-395.
98.A. K. Thapa, K. Saimen and T. Ishihara, Electrochemical and Solid-State Letters, 2010, 13, A165.
99.R. Dedryvere, H. Martinez, S. Leroy, D. Lemordant, F. Bonhomme, P. Biensan and D. Gonbeau, Journal of Power Sources, 2007, 174, 462-468.
100.M. Matsui, K. Dokko and K. Kanamura, Journal of Power Sources, 2008, 177, 184-193.
101.K. W. Schroder, H. Celio, L. J. Webb and K. J. Stevenson, The Journal of Physical Chemistry C, 2012, 116, 19737-19747.
102.S. A. Freunberger, Y. Chen, Z. Peng, J. M. Griffin, L. J. Hardwick, F. Barde, P. Novak and P. G. Bruce, J Am Chem Soc, 2011, 133, 8040-8047.
103.J. M. Paulsen, C. L. Thomas and J. R. Dahn, Journal of The Electrochemical Society, 2000, 147, 861-868.
104.M. Sathiya, K. Ramesha, G. Rousse, D. Foix, D. Gonbeau, A. S. Prakash, M. L. Doublet, K. Hemalatha and J. M. Tarascon, Chemistry of Materials, 2013, 130325084124005.
105.S. Gopukumar, K. Y. Chung and K. B. Kim, Electrochimica Acta, 2004, 49, 803-810.
106.S. Hy, W.-N. Su, J.-M. Chen and B.-J. Hwang, The Journal of Physical Chemistry C, 2012, 116, 25242-25247.
107.C. M. Julien and M. Massot, Materials Science and Engineering: B, 2003, 100, 69-78.
108.S. F. Amalraj, D. Sharon, M. Talianker, C. M. Julien, L. Burlaka, R. Lavi, E. Zhecheva, B. Markovsky, E. Zinigrad, D. Kovacheva, R. Stoyanova and D. Aurbach, Electrochimica Acta, 2013, 97, 259-270.
109.S. Okazaki, N. Ohtori and I. Okada, J. Chem. Phys., 1989, 91, 5587.
110.P. Larkin, Infrared and Raman Spectroscopy: principles and spectral interpretation, Elsevier Inc., 2011.
111.M. Jiang, B. Key, Y. S. Meng and C. P. Grey, Chemistry of Materials, 2009, 21, 2733-2745.
112.R. Black, S. H. Oh, J.-H. Lee, T. Yim, B. Adams and L. F. Nazar, Journal of the American Chemical Society, 2012, 134, 2902-2905.
113.J. Hong, D.-H. Seo, S.-W. Kim, H. Gwon, S.-T. Oh and K. Kang, Journal of Materials Chemistry, 2010, 20, 10179.
114.N. Yabuuchi, K. Yoshii, S. T. Myung, I. Nakai and S. Komaba, J Am Chem Soc, 2011, 133, 4404-4419.
115.M. Oishi, T. Fujimoto, Y. Takanashi, Y. Orikasa, A. Kawamura, T. Ina, H. Yamashige, D. Takamatsu, K. Sato, H. Murayama, H. Tanida, H. Arai, H. Ishii, C. Yogi, I. Watanabe, T. Ohta, A. Mineshige, Y. Uchimoto and Z. Ogumi, Journal of Power Sources, 2013, 222, 45-51.
116.C. R. Fell, D. Qian, K. J. Carroll, M. Chi, J. L. Jones and Y. S. Meng, Chemistry of Materials, 2013, 130412094803002.
117.P. Lanz, H. Sommer, M. Schulz-Dobrick and P. Novak, Electrochimica Acta, 2013, 93, 114-119.
118.F. La Mantia, F. Rosciano, N. Tran and P. Novak, Journal of Applied Electrochemistry, 2008, 38, 893-896.
119.S. W. Lee, C. Carlton, M. Risch, Y. Surendranath, S. Chen, S. Furutsuki, A. Yamada, D. G. Nocera and Y. Shao-Horn, J Am Chem Soc, 2012, 134, 16959-16962.
120.M. Gu, I. Belharouak, J. Zheng, H. Wu, J. Xiao, A. Genc, K. Amine, S. Thevuthasan, D. R. Baer, J.-G. Zhang, N. D. Browning, J. Liu and C. Wang, ACS Nano, 2012, 7, 760-767.
121.W. S. Yoon, M. Balasubramanian, K. Y. Chung, X. Q. Yang, J. McBreen, C. P. Grey and D. A. Fischer, J. Am. Chem. Soc., 2005, 127, 17479.
122.C.-H. Chen, B.-J. Hwang, C.-Y. Chen, S.-K. Hu, J.-M. Chen, H.-S. Sheu and J.-F. Lee, Journal of Power Sources, 2007, 174, 938-943.
123.C. M. Julien and D. Massot, Mater. Sci. Eng. B, 2003, 100, 69.
124.K. Kang and G. Ceder, Phys. Rev. B, 2006, 74, 094105.
125.B. Xu, C. R. Fell, M. Chi and Y. S. Meng, Energy Environ. Sci., 2011, 44, 2223.
126.Z. Li, F. Du, X. Bie, D. Zhang, Y. Cai, X. Cui, C. Wang, G. Chen and Y. Wei, J. Phys. Chem. C, 2010, 114, 22751.
127.C. R. Fell, M. Chi, Y. S. Meng and J. L. Jones, Solid State Ionics, 2012, 207, 44.
128.D. Y. W. Yu and K. Yanagida, J. Electrochem. Soc., 2011, 158, A1015.
129.V. T. T. Ho, C. J. Pan, J. Rick, W. N. Su and B. J. Hwang, J. Am. Chem. Soc., 2011, 133, 11716.
130.Y. Tamenori, M. Morita and T. Nakamura, J. Synchrotron Radiat., 2011, 18, 747.
131.B. T. Thole and G. van der Laan, Phys. Rev. B, 1988, 38, 3158.
132.H. Ikeno, T. Mizoguchi, Y. Koyama, Z. Ogumi, Y. Uchimoto and I. Tanaka, J. Phys. Chem. C, 2011, 115, 11871.
133.F.M.F. de Groot, M. Grioni, J.C. Fuggle J. Ghijsen, G.A. Sawatzky and H. Petersen, Phys. Rev. B., 1989, 40.
134.W.-S. Yoon, M. Balasubramanian, X.-Q. Yang, Z. Fu, D. A. Fischer and J. McBreen, Journal of The Electrochemical Society, 2004, 151, A246.
135.W. S. Yoon and K. B. Kim, J. Phys. Chem. B, 2002, 106, 2526.
136.J. Liu and A. Manthiram, J. Mater. Chem., 2010, 20, 3961.
137.J. Liu, B. Reeja Jayan and A. Manthiram, J. Phys. Chem. C, 2010, 114, 9528.
138.Y. Wu and A. Manthiram, Solid State Ionics, 2009, 180, 50.
139.Q. Y. Wang, J. Liu, A. Vadivel Murugan and A. Manthiram, J. Mater. Chem., 2009, 19, 4965.
140.Y. S. Jung, A. Cavanagh, Y. Yan, S. George and A. Manthiram, J. Electrochem. Soc., 2011, 158, A1298.
141.Y. K. Sun, M. J. Lee, C. S. Yoon, J. Hassoun, K. Amine and B. Scrosati, Adv. Mater., 2012, 24, 1192.
142.S. K. Hu, G. H. Cheng, M. Y. Cheng, B. J. Hwang and R. Santhanam, J. Power Sources, 2009, 188, 564.
143.J. Zheng, M. Gu, J. Xiao, P. Zuo, C. Wang and J. G. Zhang, Nano Lett, 2013, 13, 3824-3830.
144.A. Boulineau, L. Simonin, J. F. Colin, C. Bourbon and S. Patoux, Nano Lett, 2013, 13, 3857-3863.
145.M. Bettge, Y. Li, K. Gallagher, Y. Zhu, Q. Wu, W. Lu, I. Bloom and D. P. Abraham, Journal of The Electrochemical Society, 2013, 160, A2046-A2055.
146.E. McCalla, A. W. Rowe, R. Shunmugasundaram and J. R. Dahn, Chemistry of Materials, 2013, 25, 989-999.
147.J. Rana, M. Stan, R. Kloepsch, J. Li, G. Schumacher, E. Welter, I. Zizak, J. Banhart and M. Winter, Advanced Energy Materials, 2013, n/a-n/a.
148.K. Kubobuchi, M. Mogi, H. Ikeno, I. Tanaka, H. Imai and T. Mizoguchi, Applied Physics Letters, 2014, 104, 053906.
149.R. Xiao, H. Li and L. Chen, Chemistry of Materials, 2012, 24, 4242-4251.
150.D. E. Sayers, Report of the International XAFS Society Standards and Criteria Committee, 2000.
151.B. Ravel and M. Newville, J. Synchrotron Radiat., 2005, 12, 537-541.
152.A. C. Larson and R. B. Von Dreele, Los Alamos National Laboratory Report LAUR 86-748, 1994.
153.B. H. Toby, J. Appl. Cryst., 2001, 34, 210-213.
154.C. Yogi, D. Takamatsu, K. Yamanaka, H. Arai, Y. Uchimoto, K. Kojima, I. Watanabe, T. Ohta and Z. Ogumi, Journal of Power Sources, 2014, 248, 994-999.
155.J. Breger, M. Jiang, N. Dupre, Y. S. Meng, Y. Shao-Horn, G. Ceder and C. P. Grey, Journal of Solid State Chemistry, 2005, 178, 2575-2585.
156.H. Yu, Y. Qian, M. Otani, D.-M. Tang, S. Guo, Y. Zhu and H. Zhou, Energy & Environmental Science, 2013.
157.Y. W. Tsai, B. J. Hwang, G. Ceder, H. S. Sheu, D. G. Liu and J. F. Lee, Chemistry of Materials, 2005, 17, 3191-3199.
158.P. Strobel and B. Lambert-Andron, Journal of Solid State Chemistry, 1988, 75, 90-98.
159.W.-S. Yoon, M. Balasubramanian, K. Y. Chung, X.-Q. Yang, J. McBreen, C. P. Grey and D. A. Fischer, Journal of the American Chemical Society, 2005, 127, 17479-17487.
160.J. Suntivich, W. T. Hong, Y.-L. Lee, J. M. Rondinelli, W. Yang, J. B. Goodenough, B. Dabrowski, J. W. Freeland and Y. Shao-Horn, The Journal of Physical Chemistry C, 2014, 118, 1856-1863.
161.Y. K. Sun, M. G. Kim, S. H. Kang and K. Amine, Journal of Materials Chemistry, 2003, 13, 319-322.
162.W. Yang, X. Liu, R. Qiao, P. Olalde-Velasco, J. D. Spear, L. Roseguo, J. X. Pepper, Y.-d. Chuang, J. D. Denlinger and Z. Hussain, Journal of Electron Spectroscopy and Related Phenomena, 2013.
163.C. R. Fell, D. Qian, K. J. Carroll, M. Chi, J. L. Jones and Y. S. Meng, Chemistry of Materials, 2013, 25, 1621-1629.
164.X. Yu, Y. Lyu, L. Gu, H. Wu, S.-M. Bak, Y. Zhou, K. Amine, S. N. Ehrlich, H. Li, K.-W. Nam and X.-Q. Yang, Advanced Energy Materials, 2013, n/a-n/a.
165.F. Lin, I. M. Markus, D. Nordlund, T.-C. Weng, M. D. Asta, H. L. Xin and M. M. Doeff, Nature communications, 2014, 5.
166.X. Meng, X. Q. Yang and X. Sun, Adv Mater, 2012, 24, 3589-3615.
167.Y. S. Jung, A. S. Cavanagh, L. A. Riley, S.-H. Kang, A. C. Dillon, M. D. Groner, S. M. George and S.-H. Lee, Advanced Materials, 2010, 22, 2172-2176.
168.J.-T. Lee, F.-M. Wang, C.-S. Cheng, C.-C. Li and C.-H. Lin, Electrochimica Acta, 2010, 55, 4002-4006.
169.D. Guan, J. A. Jeevarajan and Y. Wang, Nanoscale, 2011, 3, 1465.
170.Y. Seok Jung, A. S. Cavanagh, Y. Yan, S. M. George and A. Manthiram, Journal of The Electrochemical Society, 2011, 158, A1298.
171.H.-M. Cheng, F.-M. Wang, J. P. Chu, R. Santhanam, J. Rick and S.-C. Lo, The Journal of Physical Chemistry C, 2012, 116, 7629-7637.
172.M. Bettge, Y. Li, B. Sankaran, N. D. Rago, T. Spila, R. T. Haasch, I. Petrov and D. P. Abraham, Journal of Power Sources, 2013, 233, 346-357.
173.X. Zhang, I. Belharouak, L. Li, Y. Lei, J. W. Elam, A. Nie, X. Chen, R. S. Yassar and R. L. Axelbaum, Advanced Energy Materials, 2013, 3, 1299-1307.
174.C. Zhan, J. Lu, A. Jeremy Kropf, T. Wu, A. N. Jansen, Y. K. Sun, X. Qiu and K. Amine, Nature communications, 2013, 4, 2437.
175.J. M. Pan, B. L. Maschhoff, U. Diebold and T. E. Madey, Journal of Vacuum Science & Technology A, 1992, 10, 2470-2476.
176.B. Hammer, S. Wendt and F. Besenbacher, Top Catal, 2010, 53, 423-430.
177.S. Hy, Felix, Y.-H. Chen, J.-y. Liu, J. Rick and B.-J. Hwang, Journal of Power Sources, 2014, 256, 324-328.

QR CODE