簡易檢索 / 詳目顯示

研究生: 郭志平
Zhi-Ping Guo
論文名稱: 串聯諧振式高壓設備試驗用電源產生器之研製
Implementation of a Series Resonant High Voltage Generator for High Power Apparatus Test
指導教授: 楊宗銘
Tsung-Ming, Yang
口試委員: 劉添華
Tian-Hua, Liu
劉益華
Yi-Hua, Liu
陳良瑞
Liang-Rui, Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 124
中文關鍵詞: 擾動觀察法串聯諧振品質因數
外文關鍵詞: perturbation and observeation method, quality factor, series resonant
相關次數: 點閱:422下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文旨在研製ㄧ串聯諧振式高壓電源產生器,其主要應用於高功率電氣設備測試方面。在高壓測試程序中,高壓待測設備之端點阻抗特性近似一電容性負載。因此,應用串聯諧振方法於本系統中,而其待測設備即視為諧振電路中之電容器。本論文所提之系統為一標準二階系統,故可藉由系統的暫態響應來估測出系統諧振頻率。此外,利用最小化待測設備之端電壓總諧波失真度,進而監控系統諧振情況。由於系統諧振頻率是由元件所決定,故需ㄧ可調數位帶通濾波器以解析出待測元件之端電壓基本波成份。本論文採用擾動觀察法來追蹤系統諧振頻率,且應用數位信號處理器調整輸出電壓準位。最後,經由模擬和實驗的結果驗證本論文所提之方法確具可行性。


The purpose of this thesis is to implement a series resonant type high voltage generator used for testing high power electric device. Under high voltage testing procedure, the impedance characteristic of the terminal of the under-test device is similar to capacitance. Therefore, the series resonant method can be employed with treating the device terminals as the capacitor needed in the resonant circuit. The proposed system is a standard second-order system, so the resonant frequency can be estimated through the transient responses of the system. Besides, the resonant condition is monitored by minimizing the total harmonic distortion(THD) of the voltage applied to the device terminals. Because the resonant frequency is device dependent, a tunable digital band-pass filter is designed for separating the fundamental component from the output voltage. In this thesis, we use perturbation and observeation method to track the resonant frequency of the system. A DSP-based controller is employed to regulate the output voltage. Both the simulation and experimental results are obtained to show the validity of the proposed system.

中文摘要 I 英文摘要 II 誌謝 III 目錄 IV 符號索引 VII 圖例索引 IX 表格索引 XIII 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 1.3 研究方法 2 1.4 章節簡述 3 第二章 高壓設備之現場測試 5 2.1 基本概念 5 2.2 現場測試之目的 6 2.3 IEC規範 6 2.3.1 電纜外披覆層的電壓試驗 6 2.3.2 電纜絕緣層的耐電壓試驗 7 2.4 試驗方法種類 8 2.4.1 直流耐電壓試驗法 8 2.4.2 交流耐電壓試驗法 9 第三章 諧振電路之基本原理 13 3.1 串聯諧振電路 13 3.2 系統品質因數 15 3.3 系統激勵響應 17 第四章 串聯諧振電路控制 21 4.1 弦式調變系統 22 4.1.1 單極性脈寬調變切換 22 4.1.2 擾動觀察法 26 4.2 方波調變系統 32 4.2.1 總諧波失真度之定義 35 4.2.2 可變中心頻率之數位帶通濾波器 37 4.2.3 總諧波失真度證明 42 4.3 待測設備種類變化之效應 48 第五章 硬體架構與軟體規劃 51 5.1 硬體架構 51 5.1.1 TMS320LF2407數位控制板 51 5.1.2 變頻電壓源及諧振電路 54 5.1.3 電壓、電流感測電路 57 5.2 軟體規劃 59 5.2.1 整數運算的實現 59 5.2.2 回授程式設計 60 5.2.3 程式流程介紹 62 第六章 模擬與實作結果 69 6.1 弦式調變系統之模擬與實作 70 6.2 方波調變系統之模擬與實作 80 6.3 可變中心頻率之數位帶通濾波器實作 96 第七章 結論與建議 101 參考文獻 103 作者簡介 107

[1] G. Paap and A. Verveen, “A 50 Hz after laying test for high voltage extruded insulation cables,” IEEE Trans. on Power Delivery, Vol. 7, pp. 510-514, 1992.

[2] W. Hauschild and W. Schufft, “Alternating voltage on-site testing of XLPE cables : the parameter selection of frequency-tuned resonant test system,” 10th ISH Montreal, Vol. 4, pp. 75-78, 1997.

[3] CIGRE Working Group (J. Becker etc.), “After laying tests on high-voltage extruded insulation cable system,” Electra, No. 173, pp. 33-41, 1997.

[4] W. Boone, G. C. Damtra, W. J. Jansen, and C. de Ligt, “VLF HV generator for testing cables after laying,” 5th ISH Braunschweig, pp. 04-62, 1987.

[5] “High-voltage test techniques part 1 : general definitions and test requirements,” IEC-Pub. 60060-1, 1989.

[6] “High-voltage test techniques part 1 : measuring systems,” IEC-Pub. 60060-2, 1994.

[7] “High-voltage test techniques part 3 : definitions and requirements for on-site tests,” IEC-Pub. 60060-3, 2001.

[8] “Insulation coordination part 1 : definitions , principles and rules,” IEC-Pub. 60071-1, 1993.

[9] “Power cables with extruded insulation and their accessories for rated voltages above 30kV (Um=36kV) up to 150kV (Um=170kV) -test methods and requirements,” IEC-Pub. 60840, 2004.

[10] “Tests on cable oversheaths which have a special protective function and are applied by extrusion,” IEC-Pub. 60229, 1982.

[11] K. Kikuchi, F. Fukui, S. Hiyama, S. Lde, T. Ueno, and K. Nagano, “Recent technical progress in accessories for extra-high voltage XLPE cables in Japan / Progres techniques recents Dans Les accessories destines aux cable polyethyiene reticule. THT au Japan,” CIGRE, pp. 21-203, 1992.

[12] N. Van Schaik, “Present situation and future trends regarding equipment for site testing,” CIGRE, pp. 95/01-13, 1995.

[13] P. Mohaupt, “AC on-site test equipment,” CIGRE, pp. 14/95, 1995.

[14] E. Lemke and P. Schmiegel, “Complex discharge analyzing (CDA) an alternative procedure for diagnostic tests on HV power apparatus of extremely high capacity,” 9th ISH, 1995.

[15] E. Lemke, T. Strehl, and D. RuBwurm, “New developments in the field of PD detection and location in power cables under on-site conditions,” 11th ISH London, pp. 5.106, 1999.

[16] E. Gulski, J. T. Smit, T. C. Smit, P. N. Seitz, and M. Turner, “On-site PD diagnostics of power cables using oscillating wave test systems,” 11th ISH London, pp. 5.112, 1999.

[17] M. A. I. Lang, “On-site resonant test equipment : field record,” CIGRE, pp. 16/95, 1995.

[18] M. A. I. Lang, K. W. Leeourn, J. P. Reynders, and E. W. Smith, “A variable frequency series resonant test set for after laying tests on XLPE cables / Un dispositif de resonant series a frequency variable pour les essais apres pose de cables isoles au polyethylene reticule,” CIGRE, pp. 21-105, 1994.

[19] W. Schufft, W. Hauschild, P. Coors, W. WeiBenberg, and W. Einenkel, “Powerful frequency tuned resonant test systems for after laying tests 110kV XLPE cables,” 9th ISH Graz, pp. 4486, 1995.

[20] W. Schufft, P. Coors, W. Hauschild, and J. Spiegelberg, “Frequency tuned resonant test system for on-site testing and diagnostics of extruded cables,” 11th ISH London, pp. 5.335, 1999.

[21] A. Jaafari and G. Joos, “A compact high voltage low frequency power supply,” IEEE APEC, Vol. 2, pp. 821-825, 1995.

[22] Philip T. Krein, “Elements of power electronics,” New York : Oxford University Press, pp. 284-289, 1998.

[23] Ned Mohan, Tore M. Undeland, and William P. Robbins, “Power electronics:converters, applications, and design,” New York:Wiley, 3rd ed., 1995.

[24] 李思賢,「數位式單相低功率太陽光能轉換系統」,國立中山大學電機工程所碩士論文,12-19頁,2003。

[25] 林忠榮,鄒宏基,華志強,「電流轉換器應用於太陽能電池之最大功率追蹤」,電力電子技術雙月刊,38-50頁,1999。

[26] C. C. Hua and C. M. Shen, “Control of dc/dc converters for solar energy system with maximum power tracking,” IEEE Industrial Electronics, Control and Instrumentation, Vol. 2, pp. 827-832, 1997.

[27] M. Matsui, T. Kitano, D. H. Xu, and Z. Q. Yang, “A new maximum photovoltaic power tracking control scheme based on power equilibrium at dc link,” IEEE Industry Applications Conference, Vol. 2, pp. 804-809, 1999.

[28] K. H. Hussein, I. Muta, T. Hoshino, and M.Osakada, “Maximum photovoltaic power tracking : an algorithm for rapidly changing atmospheric conditions,” IEE proc. Gener. Transm. Distrib, Vol. 142, No. 1, pp. 59-64, 1995.

[29] H. S. H. Chung, K. K. Tse, S. Y. R. Hui, and C. M. Mok, “A novel maximum power point tracker for PV systems,” IEEE APEC, Vol. 1, pp. 321-327, 2001.

[30] H. K. Kwan, “Tunable and variable passive digital filters for multimedia signal processing,” IEEE Proceedings of 2001 International Symposium on Intelligent Multimedia, pp. 229-232, 2001.

[31] T. B. Deng and T. Soma, “Variable digital filter design using the outer product expansion,” IEE Proceedings Vision, Image and Signal Processing, Vol. 141, No. 2, pp. 123-128, 1994.

[32] F. O. Simons, A. D. George, B. A. Freathy, and J. Medina, “Design and simulation of continuously programmable digital filter systems,” IEEE Proceedings of the 26th Southeastern Symposium on System Theory, pp. 255-259, 1994.

[33] Walter S. Zaengl and Felix Bernasconi, “High voltage insulation testing system,” United States Patent, Patent No. 4,338,561, July 6, 1982.

[34] TMS320LF/LC240xA DSP controllers reference guide, TI, 2001.

[35]陳啟文,「DSP-Based線性步進馬達閉迴路驅動器之設計與研製」,國立台灣科技大學電機工程所碩士論文,65-67頁,2003。

QR CODE