簡易檢索 / 詳目顯示

研究生: 蕭昱鼎
Yu-Ding Xiao
論文名稱: 以擴展型卡爾曼濾波器為基礎進行感應馬達轉速, 負載, 轉子及定子溫度之即時估測
EKF-based Real Time Estimation of the Speed, Load, and the Rotor and Stator Temperatures in Induction Motors
指導教授: 姜嘉瑞
Chia-Jui Chiang
口試委員: 黃仲欽
JHONG-CIN HUANG
劉添華
TIAN-HUA LIOU
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 130
中文關鍵詞: 感應馬達擴展型卡爾曼濾波器
外文關鍵詞: induction motor, EKF
相關次數: 點閱:272下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

感應馬達因為其堅固、廉價且耐用等優點在工業界被廣泛的運用,控制方面也因為向量控制的出現使得其控制性能大大的提升,而在無感測控制相關研究中,許多參數如轉速、定子阻抗以及轉子溫度皆會隨著操作條件不同以產生轉速上的變化或是電阻飄移的現象,轉速方面會受電流、磁通以及負載影響,而定子及轉子溫度變化會導致電阻飄移,且在許多馬達參數皆會受其影響所以被受重視。
以擴展型卡爾曼濾波器 (Extended Kalman Filter, EKF) 為基礎所發展之估測器因具有雜訊免疫及線上即時估測的能力,使其在無感測器控制議題上廣泛的被採用。而本研究以 EKF 為基礎進行感應馬達轉速、負載以及定子及轉子溫度之即時估測,並且針對以轉速為擴展項之五階估測器和以負載為擴展項估測器做不同控制下實驗上的比較和探討,也針對以轉子溫度為擴展項之七階估測器即定子溫度估測器在感應馬達長時間驅動下兩者估測效能。


induction motors(IM) have a wide range of applications in the industries globally because of its sturdiness and durability.Due to the booming of vector control,the control aspect of induction motors is greatly improved .On speed-sensorless control, the observer is as important as the controller.Many parameters such as speed, Both the stator resistance and the rotor temperature will vary with the operating conditions to produce a change in speed or resistance drift.It has been a critical issue for speed-sensorless control.Based on the Extended Kalman Filter (EKF), the estimator has been widely used in sensorless control issues due to its ability to provide noise immunity and online real-time estimation.In this thesis, the EKF is used to estimate the induction motor’s speed, load and the stator and rotor temperatures. And completed a different estimated method of speed and a different estimated method of temperature, compare and discuss in the experiment result.

目 錄 摘要.................................................................................................................................... i 英文摘要............................................................................................................................ ii 致謝.................................................................................................................................... iii 目錄.................................................................................................................................... v 圖目錄................................................................................................................................ viii 表目錄................................................................................................................................ ix 第一章 導論...................................................................................................................... 1 1.1 研究背景........................................................................................................... 1 1.2 文獻回顧........................................................................................................... 3 1.3 研究動機........................................................................................................... 5 1.4 論文架構........................................................................................................... 5 第二章 實驗系統架構...................................................................................................... 7 2.1 硬體設備........................................................................................................... 7 2.1.1 驅動器............................................................................................... 9 2.1.2 感應馬達........................................................................................... 11 2.1.3 資料擷取系統................................................................................... 13 2.1.4 編碼器............................................................................................... 14 2.1.5 自耦變壓器....................................................................................... 15 2.1.6 扭矩感測器....................................................................................... 16 2.1.7 磁滯制動器....................................................................................... 17 2.1.8 差動探棒........................................................................................... 18 2.1.9 霍爾元件........................................................................................... 19 2.1.10 溫度感測器....................................................................................... 19 2.2 軟體設備........................................................................................................... 22 2.2.1 MATLAB.......................................................................................... 22 2.2.2 Code Composer Studio v6.1............................................................. 22 第三章 感應馬達模型建立.............................................................................................. 23 3.1 感應馬達簡介................................................................................................... 23 iv 目 錄 3.2 感應馬達之 abc 軸動態方程式....................................................................... 26 3.3 座標軸轉換及其應用....................................................................................... 30 3.4 感應馬達之 qd0 軸動態方程式....................................................................... 36 3.5 電磁轉矩與運動方程式................................................................................... 43 3.6 熱動態模型....................................................................................................... 45 3.6.1 馬達功率損失................................................................................... 45 3.6.2 熱動態模型....................................................................................... 46 第四章 控制器及估測器設計.......................................................................................... 48 4.1 控制器設計....................................................................................................... 48 4.1.1 三相感應馬達之轉子磁場導向控制............................................... 48 4.1.2 控制器參數設計............................................................................... 51 4.2 感應馬達之擴展型估測器設計....................................................................... 59 4.2.1 卡爾曼濾波器簡介........................................................................... 59 4.2.2 離散時間之卡爾曼濾波器............................................................... 60 4.2.3 擴展型卡爾曼濾波器....................................................................... 65 4.3 無速度感測器之卡爾曼濾波器設計............................................................... 68 4.3.1 速度與負載擴展項........................................................................... 69 4.3.2 溫度變化估測之卡爾曼濾波器設計............................................... 74 第五章 實驗結果.............................................................................................................. 78 5.1 系統配置........................................................................................................... 78 5.2 轉速估測實驗................................................................................................... 81 5.3 轉子及定子溫度七階估測器實驗................................................................... 100 第六章 結論與未來展望.................................................................................................. 109 6.1 結論................................................................................................................... 109 6.2 未來展望........................................................................................................... 109 附錄 A-符號定義說明...................................................................................................... 110 附錄 B-熱參數鑑別........................................................................................................... 113 參考文獻............................................................................................................................ 118

[1] 黃仲欽, 「電機機械理論」 . 課程講義, 2015.
[2] G. Welch and G. Bishop, “An introduction to the kalman filter (tr95-041),” Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, pp. 27599–3175, 2006.
[3] de:Benutzer:Kku . (2003) [Online]. Available:https://commons.wikimedia.org/wiki/File:Hmm.png.
[4] Ciphergoth. (2006) [Online]. Available:https:// commons.wikimedia.org/ wiki/ File:Kalman filter model.png.
[5] 謝仲翔, 「空間向量脈寬調變驅控之鼠籠式感應馬達動態建模」 . 國立台灣科技大學機械工程學系,碩士論文, 2017.
[6] 劉昌煥, 「交流電機控制 - 向量控制與直接轉矩控制原理」 . 東華書局, 2008.
[7] T. I. Europe, “Sensorless control with kalman filter on tms320 fixed-point dsp,” Liter-ature number: BPRA057, 1997.
[8] S. Das, A. Pal, R. Kumar, and A. K. Chattopadhyay, “An improved rotor flux based model reference adaptive controller for four-quadrant vector controlled induction motor
drives,” in TENCON 2015 - 2015 IEEE Region 10 Conference, pp. 1–6.
[9] Y. Bensalem and M. N. Abdelkrim, “A sensorless neural model reference adaptive control for induction motor drives,” in 2009 3rd International Conference on Signals, Circuits and Systems (SCS), pp. 1–6.
[10] S. Maiti, C. Chakraborty, Y. Hori, and M. C. Ta, “Model reference adaptive controller-based rotor resistance and speed estimation techniques for vector controlled induction motor drive utilizing reactive power,” IEEE Transactions on Industrial Electronics,vol. 55, no. 2, pp. 594–601, 2008.
[11] R. Verma, V. Verma, and C. Chakraborty, “Ann based sensorless vector controlled induction motor drive suitable for four quadrant operation,” in Students’ 2014 IEEE Technology Symposium (TechSym), pp. 182–187.
[12] S. T. Nguyen, P. H. Pham, T. V. Pham, H. X. Ha, C. T. Nguyen, and P. C. Do, “A sensorless three-phase induction motor drive using indirect field oriented control and artificial neural network,” in 2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA), pp. 1454–1459.
[13] M. Barut, S. Bogosyan, and M. Gokasan, “Experimental evaluation of braided ekf for sensorless control of induction motors,” IEEE Transactions on Industrial Electronics, vol. 55, no. 2, pp. 620–632, 2008.
[14] Z. Yin, G. Li, Y. Zhang, J. Liu, X. Sun, and Y. Zhong, “A speed and flux observer of induction motor based on extended kalman filter and markov chain,”IEEE Transactions on Power Electronics, vol. 32, no. 9, pp. 7096–7117, 2017.
[15] M. Barut, S. Bogosyan, and M. Gokasan, “Speed-sensorless estimation for induction motors using extended kalman filters,” IEEE Transactions on Industrial Electronics, vol. 54, no. 1, pp. 272–280, 2007.
[16] Y. Zhang, Z. Zhao, T. Lu, L. Yuan, W. Xu, and J. Zhu, “A comparative study of luenberger observer, sliding mode observer and extended kalman filter for sensorless vector control of induction motor drives,” in 2009 IEEE Energy Conversion Congress and Exposition, pp. 2466–2473.
[17] F. Chen and M. Dunnigan, “Comparative study of a sliding-mode observer and kalman filters for full state estimation in an induction machine,” IEE Proceedings-Electric Power Applications, vol. 149, no. 1, pp. 53–64, 2002.
[18] M.Khafallah, A.ElAfia, A.Cheriti, F.ElMariami, A.Saad, andB.ElMoussaoui, “Ekf based speed sensorless vector control of an induction machine,” in 2004 IEEE International Conference on Industrial Technology, 2004. IEEE ICIT’04., vol. 3, pp. 1338–1344.
[19] K. V. Shivaramakrishna, A. K. Chauhan, M. Raghuram, and S. K. Singh, “Sensorless control of induction motor using ekf: Analysis of parameter variation on ekf performance,” in 2016 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), pp. 1–4.
[20] Y. Zahraoui, C. Fahassa, M. Akherraz, and A. Bennassar, “Sensorless vector control of induction motor using an ekf and svpwm algorithm,” in 2016 5th International Conference on Multimedia Computing and Systems (ICMCS), pp. 588–593.
[21] M.Khafallah, A.E.Afia, A.Cheriti, F.E.Mariami, A.Saad, andB.E.Moussaoui, “Ekf based speed sensorless vector control of an induction machine,” in Industrial Technology, 2004. IEEE ICIT ’04. 2004 IEEE International Conference on, pp. 1338–1344.
[22] 王衍凱, 「以擴展型卡爾曼濾波器為基礎之感應馬達無感測器控制及定子與轉子阻抗估測」 . 國立台灣科技大學機械工程學系,碩士論文, 2010.
[23] K. L. Shi, T. F. Chan, Y. K. Wong, and S. L. Ho, “Speed estimation of an induction motor drive using an optimized extended kalman filter,” IEEE Transactions on Industrial Electronics, vol. 49, no. 1, pp. 124–133, 2002.
[24] M. Menaa, O. Touhami, and R. Ibtiouen, “Estimation of rotor resistance of an induction motor using extended kalman filter and spiral vector theory,” in Proceedings of 2003 IEEE Conference on Control Applications, 2003. CCA 2003., vol. 2, pp. 1262–1266, IEEE, 2003.
[25] M. Barut, O. S. Bogosyan, and M. Gokasan, “Ekf based estimation for direct vector control of induction motors,” in IEEE 2002 28th Annual Conference of the Industrial Electronics Society. IECON 02, vol. 2, pp. 1710–1715, IEEE, 2002.
[26] M. Barut, S. Bogosyan, and M. Gokasan, “Switching ekf technique for rotor and stator resistance estimation in speed sensorless control of ims,” Energy Conversion and Management, vol. 48, no. 12, pp. 3120–3134, 2007.
[27] U.SyamkumarandB.Jayanand,“A reduced order smoothing filter for speed estimation of three phase induction motor,” pp. 1749–1754, 2017.
[28] R. Gunabalan, V. Subbiah, and B. R. Reddy, “Sensorless control of induction motor with extended kalman filter on tms320f2812 processor,” International Journal of Recent Trends in Engineering, vol. 2, no. 5, p. 14, 2009.
[29] Z. Wei and J. J. Luo, “Speed and rotor flux estimation of induction motors based on extended kalman filter,” pp. 157–160, 2010.
[30] J. Al-Tayie and P. Acarnley, “Estimation of speed, stator temperature and rotor temperature in cage induction motor drive using the extended kalman filter algorithm,” IEE Proceedings-Electric Power Applications, vol. 144, no. 5, pp. 301–309, 1997.
[31] R.BeguenaneandM.E.H.Benbouzid,“Induction motors thermal monitoring by means
of rotor resistance identification,” IEEE Transactions on Energy conversion, vol. 14, no. 3, pp. 566–570, 1999.
[32] P. Mellor, D. Roberts, and D. Turner, “Lumped parameter thermal model for electrical machines of tefc design,” in IEE Proceedings B (Electric Power Applications), no. 5, pp. 205–218, 1991.
[33] G. D. Demetriades, H. Z. De La Parra, E. Andersson, and H. Olsson, “A real-time thermal model of a permanent-magnet synchronous motor,” IEEE Transactions on Power Electronics, vol. 25, no. 2, pp. 463–474, 2009.
[34] K. Ogata, Discrete time control systems. Prentice Hall, Inc., 1987.
[35] 顏銘辰, 「整合熱電耦合及失效模式之感應馬達動態模型」 . 國立台灣科技大學機械工程學系,碩士論文, 2015.
[36] M. B. B. Akin, “Sensored field oriented control of 3-phase induction motors,” in Texas
Instruments, Feb. 2010.
[37] M. B. B. Akin, “Sensorless field oriented control of 3-phase induction motors using
f2833x,” in Texas Instruments, Oct. 2013.

無法下載圖示 全文公開日期 2024/08/28 (校內網路)
全文公開日期 2024/08/28 (校外網路)
全文公開日期 2024/08/28 (國家圖書館:臺灣博碩士論文系統)
QR CODE