簡易檢索 / 詳目顯示

研究生: 劉政佳
Cheng-Chia Liu
論文名稱: 低輸入電流漣波之主動箝位型順向式轉換器
Active-Clamp Forward Converter with Current Ripple Reduction
指導教授: 呂錦山
Ching-Shan Leu
口試委員: 王金標
Jin-Biao Wang
黃仲欽
Jong-Chin Hwang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 87
中文關鍵詞: 電流連波降低電磁干擾主動型箝位順向式轉換器同步整流
外文關鍵詞: synchronous rectification, current ripple reduction, EMI, Active-Clamp, forward converter
相關次數: 點閱:362下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文提出具有低輸入電流漣波之主動箝位型順向式轉換器(ACFRR)。此轉換器有較低的輸入電流連波和開關責任週期能操作大於50%,並且其輸入電流波形的基本成分強度可透過電路本身與嵌入式濾波器的設計而被衰減。
本文除介紹此轉換器之架構與工作原理,並以開關切換頻率為150 kHz、輸入36-75V、輸出5V/30A之規格,進行電路模擬與實驗來驗證其可行性而且此轉換器之最高效率為84.88%。
此外,在加入同步整流技術後,其轉換效率還能更進一步的改善。根據實驗結果,具同步整流之低輸入電流漣波主動箝位型順向式轉換器的最高效率可達到86.69%。


A novel low input-current ripple topology named Active-Clamp Forward
Converter with Current Ripple Reduction (ACFRR) is proposed in this thesis. In
addition to having lower input current ripple and more than 50% duty cycle operation,
the fundamental component intensity of the ACFRR’s input current waveform can be
reduced by designing the circuit with its embedded filter.
To demonstrate ACFRR’s feasibility, the operational principle, simulation and
experimental results of the proposed converter operated at 150 kHz switching
frequency, 36-75V input and 5V/30A output are presented and its highest efficiency
is 84.88%.
Moreover, the conversion efficiency of the ACFRR can be further improved by
applying the synchronous rectification. According to the experimental results, the
highest efficiency, 86.69% of the synchronous rectification ACFRR is achieved.

Table of Contents Abstract………………………………………………………………………..….....I Acknowledgements……………………………………………………………….…II Table of Contents…………………………………………………………………...Ⅲ List of Figures………………………………………………………………………Ⅴ List of Table………………………………………………………………………. Ⅷ Chapter 1 Introduction……………………………………..………………………1 1.1 Background and Motivation…………………………..………………….....1 1.2 Objective of the Thesis…………………………………………………...…3 1.3 Organization of the Thesis……………………………………..…………....4 Chapter 2 Active-Clamp Forward Converter with Current Ripple Reduction (ACFRR)…………………………………………………………………6 2.1 Introduction………………………………………………………….............6 2.2 Operational Principle......................................................................................7 2.3 Circuit Analysis………………….................................................................11 2.4 Circuit Design……........................................................................................15 2.5 Simulation Results (SIMetrix/SIMPLIS)………………………..………….21 2.6 Experimental Results……………………......................................................24 2.7 Characteristic Comparisons of the FAC, the FRR and the ACFRR………...28 2.8 Summary……………………………………………………........................37 Chapter 3 ACFRR Circuit Variations for Efficiency Improvement……………..38 3.1 Introduction…………………………..…………………………………......38 3.2 ACFRR Circuit Variations Introduction.........................................................38 3.3 Power Loss Improvement Estimation………………..……………..............40 3.4 Efficiency Improvement by Employing Synchronous Rectification…..........44 3.5 Experimental Results……….........................................................................49 3.6 Summary……………………………………………………........................51 Chapter 4 Conclusions and Future Research……………………………………..52 4.1 Conclusions....................................................................................................52 4.2 Future Research………………………..……………………………….…...53 References...................................................................................................................54 Appendix A1…...…………………………………………………………………….58 Appendix B1…...…………………………………………………………………….61 Appendix B2…...…………………………………………………………………….65 Appendix B3…...…………………………………………………………………….69 Vita……………………………………………………………………….…………..75

[1] www.80plus.org.
[2] Chris Calwell and Peter Ostendorp, “80 plus: a strategy for reducing the inherent
environmental impacts of computers” Electronics and the Environment
Proceedings of the 2005 IEEE International Symposium on, Page(s):151 – 156
(2005).
[3] S.A Liang, “Low cost and high efficiency PC power supply design to meet 80 plus
requirement” Industrial Technology, IEEE International Conference, Page(s):1 – 6
(2008).
[4] Tetsuro TANAKA, Tamotsu NINOMIYA and Koosuke HARADA, “Design of a
nondissipative turn-off snubber in a forward converter” Power Electronics
Specialists Conference, 19th Annual IEEE, Page(s):789 - 796 vol.2 (1988).
[5] C.S Leu, G. Hua, and F.C. Lee, “Comparison of forward topologies with various
reset schemes” Proceeding of Virginia Power Electronics Center Seminar,
pp.101-109 (1991).
[6] E.H. Wittenbreder, V.D. Baggerly, H.C. Martin, “A duty cycle extension technique
for single ended forward converters” APEC Conference Proceedings, Seventh
Annual, Page(s):51 – 57(1992).
[7] J.A. Cobos, O. Garcia, J. Sebastian, J. Uceda, “Resonant reset forward topologies
for low output voltage on board converters” Applied Power Electronics
Conference and Exposition,. Conference Proceedings, Ninth Annual, 13-17,
Page(s):703 - 708 vol.2 (1994).
[8] Min Chen, Dehong Xu, Mikihiko Matsui, “Study on magnetizing inductance of
high frequency transformer in the two-transistor forward converter” Power
Conversion Conference. PCC Osaka 2002. Proceedings of the Volume 2,
Page(s):597 - 602 vol.2 (2002).
[9] Tan, F.D, “The forward converter: from the classic to the contemporary” Applied
Power Electronics Conference and Exposition. APEC 2002. Seventeenth Annual
IEEE Volume 2, Page(s):857 - 863 vol.2 Digital Object Identifier
10.1109/APEC.2002.989344 (2002).
[10] Yilei Gu, Huiming Chen, Zhengyu Lu, Zhaoming Qian and Kun Wei, “A
Family Of Asymmetrical Dual Switch Forward DC-DC converters” Applied
Power Electronics Conference and Exposition.APEC 2005. Twentieth Annual
IEEE Volume 3, Page(s):1556 - 1560 Vol. 3 (2005).
[11] Ching-Shan Leu, “Improved forward topologies for DC-DC applications with
built-in input filter” Ph.D. dissertation, Department of Electrical Engineering,
Blacksburg, Virginia, (2006).
[12] L. Bor-Ren, C. Huann-Keng, H. Chien-En, C. Kao-Cheng and D. Wang,
“Analysis of an Active-Clamp Forward Converter”, Power Electronics and
Drives Systems,. PEDS 2005. International Conference on, Volume 1, Pages:
140-145 (2005).
[13] Li, Q., “Developing Modeling and Simulation Methodology System,” Ph. D.
Dissertation, VPI&SU, March (1999).
[14] Ching-Shan Leu, “Voltage-clamp power converters” U. S. patent pending, April
2008.
[15] Yilei Gu, Xiaoming Gu, Lijun Hang, Yu Du, Zhengyu Lu and Zhaoming Qian,
“RCD Reset Dual Switch Forward DC/DC Converter” Power Electronics
Specialists Conference, 2004. PESC 04 IEEE 35th Annual Volume
2, 20-25 Page(s):1465 - 1469 Vol.2 (2004).
[16] Bridge, C.D., “Clamp voltage analysis for RCD forward converters” Applied
Power Electronics Conference and Exposition. APEC 2000. Fifteenth Annual
IEEE Volume 2, 6-10, pp959-965 (2000).
[17] N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics: Converters,
Applications, and Design, 3rd Ed, John Wiley & Sons, Inc, 2003.
[18] R.W. Erickson, D. Maksimovic, Fundamentals of Power Electronics, 2nd Ed,
Kluwer Academic Publishers (2001).
[19] MathCAD 數學入門導引, 楊國隆、熊高生出版社:松崗, 出版日期:2008
年02 月25,ISBN:9789862041017.
[20] Transformer Design, Product Selection Guide 2003,
http://www.ferroxcube.com/
[21] Core Design, Technical Data, http://www.changsung.com
[22] “SIMPLIS reference manual” Catena software Ltd.
http://www.catena.uk.com/site/downloads/manuals.htm
[23] Ching-Shan Leu ,and Ting-Yu Chou,” Two-Switch Forward Topologies with
Various Reset Schemes”, The First International Conference on Advanced
Motor Drive, Power Electronics, and Emerging Technology, A2-3-1(2008).
[24] Cliff Jamerson and Tony Long, MagneTek Huntington, Indiana, Design
Technique for Synchronous-Switch Post Regulators, 10 HFPC PROCEEDINGS
(1993).
[25] Bor-Ren Lin, Huann-Keng Chiang, Chien-En Huang and David Wang “Analysis,
design and implementation of an Active-Clamp forward converter with
synchronous rectifier” TENCON 2005, 2005 IEEE Region Page(s):1-6.(2005).
[26] H.K. Ji, H.J. Kim, “Active-Clamp forward converter with MOSFET synchronous
rectification”Power Electronics Specialists Conference '94 Record, 25th Annual
IEEE, 20-25 June 1994 Page(s):895 - 901 vol.2 (2005).
[27] Li Xiao, Ramesh Oruganti, “Soft switched PWM DC/DC converter with
synchronous rectifiers” Telecommunications Energy Conference, INTELEC '96,
18th International , Page(s):476 – 484 (1996).
[28] Ting Qian; Wei Song; Lehman, B., "Self-Driven Synchronous Rectification
Scheme for Wide Range Application of DC/DC Converters with Symmetrically
Driven Transformers," Power Electronics Specialists Conference, PESC '06.37th
IEEE , vol., no., pp.1-6, 18-22 June (2006).
[29] 王紅梅,”新型交錯並聯反激變換器的損耗分析”張家界航空工業職業技術
學院Guangxi Journal of Light Industry 第6 期(2006)。
[30] 賴建志, ”具有同步整流技術之零電流零電壓柔切轉移順向式DC/DC 電力轉
換器之研製” 國立成功大學 中華民國九十三年七月。
[31] Xiaogao Xie, J.M Zhang, Guangyi Luo, Dezhi Jiao, Zhaoming Qian, “An
improved self-driven synchronous rectification for a resonant reset forward
converter” Applied Power Electronics Conference and Exposition, 2003. APEC
'03, Eighteenth Annual IEEE, Volume 1, 9-13 Feb. 2003, Page(s):348 - 351 vol
(2003).
[32] X. Xie, Y. Chung Hok and M. H. Pong, Studies of self-driven synchronous
rectification in low voltage power conversion , Power Electronics and Drive
Systems. PEDS '99. Proceedings of the IEEE 1999 International Conference
on, Volume: 1, Pages: 212-217 vol.1 (1999).

QR CODE