簡易檢索 / 詳目顯示

研究生: 顧乃倫
Nai-Lun Ku
論文名稱: 光學耦合傳光裝置應用於SunLego模組
Optical Coupling Transmission Used in SunLego Modules
指導教授: 黃忠偉
Allen Jong-Woei Whang
口試委員: 邱炳樟
none
杜銘秋
none
陳怡永
Yi-yung Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 66
中文關鍵詞: 自然光照明系統光學耦合傳光裝置
外文關鍵詞: Natural Light Illumination System, Optical Coupling Transmission
相關次數: 點閱:228下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,人們環保意識抬頭,綠能產業在全世界越來越備受重視,特別是在建築業,許多人為了節約能源與想要製造出對人體生、心理有益之健康照明與情境照明,熱切渴望設計出能將自然光導引入室內做為室內照明使用之產品,稱為【自然光照明系統】,此系統雖可有效運作,將太陽光導引入室內,但光纖出口端的光線分布雜亂,光線利用率不高,難以讓室內照明有均勻之效果。為了解決此問題,在此篇論文中我們設計一光學耦合傳光裝置,搭配本實驗室所研發設計之直角稜鏡集光模組,分析其光線輸出入關係式與太陽光入射此堆疊結構在輸出端之效率,發現此論文提出之結構其輸出效率較原堆疊稜鏡靜態式太陽能集光器高出47.61%之多。考量到光纖成本因子,我們定義一KPI-輸出光通量與截面積之比值,更可發現其數值為原始結構之5.89倍。在其能量轉換效率提高,配光曲線與原始結構比具傳光優勢,並大幅降低光纖數量、節省成本,我們可說這一光學耦合傳光裝置確實有達到我們預期的主要設計的。


    Currently, energy-saving and carbon dioxide reduction are the most critical issues faced by the globe. Therefore, solar energy should be used as much as possible. A possible use is to illuminate a solar cell so as to transform light energy directly into electricity. However, due to its low efficiency and high cost, the solar cell is not presently economically feasible. Utilization of solar energy, which is considered one of the most important renewable energy sources, not only reduces consumption of fossil fuel but also slows down the pace of global warming. In addition to the use of solar cells, daylight illumination is also an important access to solar energy. Our team has designed a product that can guide the natural light to the interior for indoor illumination. It is called the “Natural Light Illumiantion System.” Our system can guide sunlight to the interior, but the distribution of light at the exit of the system is disordered. To solve this problem, we have proposed an optical coupling transmission structure with right-angled prism collecting modules. We analyzed the mathematical mode of coupling transmission. And, we also analyzed the efficiency of this cascade structure at the exit surface of the concentrator. In this paper, we provide a high efficiency new concentrator coupled to a transmission device. We save 75% of the optical fiber cable expense usage and we improve efficiency by47.46% when we add an optical coupling transmission structure to our static lighting concentrator. It is batter than the original cascade prism static concentrator. Taking the fiber cost into consideration, we defined a KPI (Key Performance Index) – It mean a ratio of luminous flux on an illuminated area. Our system can provide more powerful light for indoor illumination than the original module. The optical coupling can provide high transmission efficiency and provide parallel light beams at the export from the optical coupling module. We used optical simulation tools to design and simulate the efficiency of the active module. This system will provide a great number of benefits for the people who use it.

    論文摘要 II ABSTRACT III 誌 謝 IV 目 錄 V 圖表索引 VIII 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 2 1.3太陽能源應用 4 1.4 論文大綱 6 第二章 光學基礎理論 7 2.1 向量型反射定律 (Andrew S. Glassner, 1989[13]) 7 2.2 向量型透射定律 9 2.3 Fresnel equation[14] 11 2.4 Edge-ray principle 12 2.5集光比 13 2.6光展量定理 14 2.7光度學與輻射度學 15 2.8基本照明單位量 16 2.8.1光通量(Luminous Flux,Φ) 16 2.8.2光強度(Luminous Intensity,I) 17 2.8.3輝度或亮度(luminance or brightness) 18 2.8.4 反射比及反射率(reflectance and reflection factor) 18 2.9光纖材料特性 19 2.9.1 全反射現象與光纖構造 19 2.9.2 光纖數值孔徑 20 2.9.3 光纖傳遞能量的損失 22 2.9.4 光纖材料與耐熱 24 2.10 光學耦合器的應用與介紹 25 第三章 自然光照明系統® 29 3-1建築照明 29 3-2 集光器之優缺點 38 3.3 自然光照明系統®流程圖 39 3.4 SunLego®模組效率分析 40 3.5 初步設計 階梯狀光學耦合器 42 3.6 連接損耗 45 3.7 光學耦合器的效率分析 46 第四章 模擬結果分析與討論 48 4.1 初步模擬結果與改良 48 4.2 全反射原理 51 4-3 模擬參數設定 53 4.4 夏季全天光通量比較 55 4.4.1 太陽之仰角與方位角[17] 55 4.4.2 太陽資訊與環境光照度 56 4.4.3 夏季全天效率分析 60 4.4.4 出光通量計算 61 4.5等效原理 62 4.6 KPI (Key Performance Index) 63 第五章 結論與未來展望 64 5.1 結論 64 5.2 未來展望 64 參考文獻 66

    [1]台灣因應氣候變化綱要公約資訊網
    http://www.tri.org.tw/unfccc/Unfccc/UNFCCC02.htm
    [2] Kischkoweit-Lopin, M., “Solar Energy”, Vol. 73, No. 2, pp. 77-82 (2002)
    [3] Kim, J.T., Kim, G., “Overview and new development in optical daylighting systems for building a healthy indoor environment”, Building and Environment 45, pp.256-269 (2010)
    [4] Scartezzini, J.-L, Courret, G., “Anidolic daylighting systems”, Solar Energy
    73(2), pp.123-135 (2002)
    [5] Rosemann A., Kaase, H., “Light pipe applications for daylighting systems”,
    Solar Energy 78, pp.772-780 (2005)
    [6] Winston,R., Minano, J.C., et al., Eds., Nonimaging Optics, Elsevier (2004)
    [7]向日葵追日儀 http://www.jato-it.com/himawari/index.php
    [8] L. C. Maxey,“Flexible sunlight-the history and progress of hybrid solar
    lighting”, Emerging Environmental Technologies, pp. 88-104 (2008)
    [9] SunPipe http://www.sunpipe.com/index.php
    [10] Whang, A.J.-W, Wang, C.-C., Chen, Y.-Y., “ Design of cascadable optical unit to compress light for light transmission used for indoor illumination”, Renewable Energy, Vol. 34, No. 10, pp. 2280-2295 (2009)
    [11] Yang, S.-H., Chen, Y.-Y., Whang, J.-W., “ Using prismatic structure and brightness enhancement film to design cascadable unit of static solar concentrator in natural light guiding system, ” Proc. SPIE, Santiago, USA, pp. 7423, 74230J (2009)
    [12]太陽光電資訊網 http://www.solarpv.org.tw/aboutus/knowledge/bipv.asp
    [13] Glassner, A.S., An Introduction to Ray Tracing, Academic Press (1989)
    [14] Hetch, E., Optics, fourth ed., Addison Wesley , Chap. 4.5 (2005)
    [15] Y. Fu, and N. K. A. Bryan, “Hybrid microdiffractive-microrefractive lens with a continuous relief fabricated by use of focused-ion-beam milling for single-mode fiber coupling”, Appl. Opt., 40, 5872 (2001)
    [16] E. Hecht, Optics. Reading, Mass.: Addison-Wesley (2002)
    [17]交通部中央氣象局 http://www.cwb.gov.tw/V7/index.htm
    [18]楊淑華,「藉由數學分析提升靜態式稜鏡集光器效率」,碩士論文,國立台灣
    科技大學,台北 (2010)。
    [19]潘柏軒,「應用於自然導光系統之階梯狀結構光學耦合器」,碩士論文,國立台灣科技大學,台北 (2010)。

    QR CODE