簡易檢索 / 詳目顯示

研究生: 陳智文
Alexander
論文名稱: 利用多週期高斯過程模型線上預測車流速度
Online Traffic Speed Forecasting Based on Multi-Periodicity Gaussian Process Models
指導教授: 鮑興國
Hsing-Kuo Pao
口試委員: 李育杰
Yuh-Jye Lee
葉倚任
Yi-Ren Yeh
易志偉
Chih-Wei Yi
學位類別: 碩士
Master
系所名稱: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 45
中文關鍵詞: periodicitytrafficspeedIntelligentTransportationSystemGaussianProcess
外文關鍵詞: periodicity, traffic speed, Intelligent Transportation System, Gaussian Process
相關次數: 點閱:382下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • Intelligent Transportation Systems (ITS) has been developed to aid drivers and other road-users to make a better travel decision. In recent years, many researches have been conducted in this field. Being one kind of time-series data, traffic data also follows the general aspects of time-series, which are periodicity and trend. This research highlights the periodicity aspects while also considers more specific aspects such as feature correlations and unexpected patterns. In fact, thanks to the periodicity of the traffic data, most drivers can tell how the traffic state will be on the road they are familiar with. However, this is not the case for drivers who are not familiar with the road. Here we aim to provide an approach which is able to consider both periodicity and unexpected patterns of the traffic data. We choose Gaussian Process Regression as our main model since it has the ability to explore implicit relationships between multiple variables in the traffic data.

    1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Research Framework . . . . . . . . . . . . . . . . . . . . 4 1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Traffic Speed Forecasting in Intelligent Transportation . . . . . . 6 2.1 Periodicity . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.1 Daily Patterns . . . . . . . . . . . . . . . . . . . . 8 2.1.2 Weekly Patterns . . . . . . . . . . . . . . . . . . 8 2.2 Unexpected Speed Patterns . . . . . . . . . . . . . . . . . 11 2.3 Feature Correlations . . . . . . . . . . . . . . . . . . . . . 12 v 2.4 Spatial Considerations . . . . . . . . . . . . . . . . . . . 14 3 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.1 Gaussian Process Regression . . . . . . . . . . . . . . . . 16 3.2 Conjugate Gradient Method . . . . . . . . . . . . . . . . 17 3.3 Our Approach . . . . . . . . . . . . . . . . . . . . . . . . 19 3.3.1 Data Selection . . . . . . . . . . . . . . . . . . . 20 3.4 Model Building . . . . . . . . . . . . . . . . . . . . . . . 21 3.4.1 Single-Periodicity Model . . . . . . . . . . . . . . 23 3.4.2 Multi-Periodicity Model . . . . . . . . . . . . . . 23 3.4.3 Composite-Periodicity Model . . . . . . . . . . . 24 3.4.4 Multi-Periodicity Model with Short-Term Data . . 24 3.4.5 Mean Function . . . . . . . . . . . . . . . . . . . 25 3.4.6 Parameter Selection . . . . . . . . . . . . . . . . 25 4 Experiments and Results . . . . . . . . . . . . . . . . . . . . . 27 4.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.3 Single-Periodicity Model . . . . . . . . . . . . . . . . . . 29 4.3.1 Single-Periodicity Daily Model . . . . . . . . . . 30 4.3.2 Single-Periodicity Weekly Model . . . . . . . . . 30 vi 4.3.3 Single-Periodicity Model Result Comparison . . . 30 4.4 Multi-Periodicity Model . . . . . . . . . . . . . . . . . . 33 4.5 Composite-Periodicity Model . . . . . . . . . . . . . . . . 34 4.6 Models with Short-Term Data . . . . . . . . . . . . . . . 34 4.7 Spatial Considerations . . . . . . . . . . . . . . . . . . . 37 4.8 Feature Correlations . . . . . . . . . . . . . . . . . . . . . 37 5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

    [1] M. M. Hamed, H. R. Al-Masaeid, and Z. M. B. Said, “Short-Term Prediction of Traffic Volume in
    Urban Arterials,” 1995.
    [2] C. Chen, J. Hu, Q. Meng, and Y. Zhang, “Short-time traffic flow prediction with ARIMA-GARCH
    model,” IEEE Intelligent Vehicles Symposium, Proceedings, vol. 100084, no. Iv, pp. 607–612, 2011.
    [3] B. Ghosh, B. Basu, and M. O’ Mahony, “Bayesian Time-Series Model for Short-Term Traffic Flow
    Forecasting,” Journal of Transportation Engineering, vol. 133, no. March, pp. 180–189, 2007.
    [4] Y. Xie, Y. Zhang, and Z. Ye, “Short-term traffic volume forecasting using Kalman filter with discrete wavelet decomposition,” Computer-Aided Civil and Infrastructure Engineering, vol. 22, no. 5,
    pp. 326–334, 2007.
    [5] Y. Xu, Q. Kong, and Y. Liu, “Short-term traffic volume prediction using classification and regression
    trees,” Intelligent Vehicles Symposium (IV), 2013 IEEE, no. Iv, pp. 493–498, 2013.
    [6] J. Chen, K. H. Low, and C. K.-Y. Tan, “Gaussian Process-Based Decentralized Data Fusion and Active
    Sensing for Mobility-on-Demand System,” in The 2013 Robotics: Science and Systems Conference,
    p. 10, 2013.
    [7] H. Xiao and C. Eckert, “Lazy Gaussian process committee for real-time online regression,” Proceedings of the 27th AAAI Conference on Artificial Intelligence (AAAI), pp. 969–976, 2013.
    [8] Y. Lv, Y. Duan, W. Kang, Z. Li, and F.-Y. Wang, “Traffic Flow Prediction With Big Data: A Deep
    Learning Approach,” IEEE Transactions on Intelligent Transportation Systems, pp. 1–9, 2014.
    [9] E. I. Vlahogianni, M. G. Karlaftis, and J. C. Golias, “Optimized and meta-optimized neural networks
    for short-term traffic flow prediction: A genetic approach,” Transportation Research Part C: Emerging
    Technologies, vol. 13, no. 3, pp. 211–234, 2005.
    [10] H. Yin, S. C. Wong, J. Xu, and C. K. Wong, “Urban traffic flow prediction using a fuzzy-neural
    approach,” Transportation Research Part C: Emerging Technologies, vol. 10, no. 2, pp. 85–98, 2002.
    [11] M. Castro-Neto, Y. S. Jeong, M. K. Jeong, and L. D. Han, “Online-SVR for short-term traffic flow
    prediction under typical and atypical traffic conditions,” Expert Systems with Applications, vol. 36,
    no. 3 PART 2, pp. 6164–6173, 2009.
    [12] C. H. Wu, J. M. Ho, and D. T. Lee, “Travel-time prediction with support vector regression,” IEEE
    Transactions on Intelligent Transportation Systems, vol. 5, no. 4, pp. 276–281, 2004.
    [13] J. Guo and B. M. Williams, “Real-Time Short-Term Traffic Speed Level Forecasting and Uncertainty
    Quantification Using Layered KalmanFilters,” TransportationResearchRecord: Journal of the Transportation Research Board, vol. 2175, no. -1, pp. 28–37, 2010.
    44
    [14] J. Dauwels, A. Aslam, M. T. Asif, X. Zhao, N. Mitrovic, A. Cichocki, and P. Jaillet, “Predicting traffic
    speed in urban transportation subnetworks for multiple horizons,” 13th International Conference on
    Control, Automation, Robotics & Vision, pp. 1–6, 2014.
    [15] J. Wang and Q. Shi, “Short-term traffic speed forecasting hybrid model based on Chaos-Wavelet
    Analysis-Support Vector Machine theory,” Transportation Research Part C: Emerging Technologies,
    vol. 27, pp. 219–232, 2013.
    [16] “INRIX.”
    [17] C. Rasmussen, “Gaussian processes for machine learning,” International journal of neural systems,
    vol. 14, no. 2, pp. 69–106, 2006.
    [18] J. R. Shewchuk, “An Introduction to the Conjugate Gradient Method Without the Agonizing Pain,”
    Science, vol. 49, no. CS-94-125, p. 64, 1994.

    QR CODE