簡易檢索 / 詳目顯示

研究生: 林政傑
Cheng-Chieh Lin
論文名稱: 以矽光子平台實現可調光交織器
Realization of tunable optical interleavers on silicon photonics platform
指導教授: 李三良
San-Liang Lee
口試委員: 徐世祥
Shih-Hsiang Hsu
林清富
Ching-Fuh Lin
洪勇智
Yung-Jr Hung
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 59
中文關鍵詞: 矽光子光交織器方向耦合器馬赫-曾德爾干涉儀熱光效應
外文關鍵詞: silicon photonics, optical interleaver, directional coupler, Mach–Zehnder interferometer, Thermo-optic effect
相關次數: 點閱:1690下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在傳統銅纜線訊號傳輸速度逐漸受到限制下,取而代之的是光傳輸系統,而光積體電路擁有高傳輸速度、低成本及節能的優勢,除了運用於資料運算及雲端服務,現今也開始拓展在醫療及軍用等領域的應用,因此矽光子成為新世代熱門的研究方向。
本論文利用比利時微電子研究中心所提供之矽光子製程,在絕緣層覆矽基板上製作光被動元件。首先設計方向耦合器使能於1300 nm~1320 nm波長範圍有穩定的耦合效率,並用以連接兩組馬赫-曾德爾干涉儀實現光交織器。然而,實際量測的耦合效率與設計值相異,從模擬的方式探討後發現,由於設計時使用的2.5D FDTD會將垂直軸(垂直於晶圓表面)方向忽略,因此未計算到此方向的耦合而造成誤差,論文中也驗證了3D FDTD結果與量測結果較為相符。
因為耦合效率的差異下,使光交織器的通帶及阻帶產生分波的現象,原先預計耦合效率為0.5而實際為0.82,故當其耦合效率非0.5時,使得兩輸出端光明滅比互相抑制。此外亦透過溫度控制器使光交織器波長位移,經過線性推估為0.061 nm/℃。


The inter-connection with conventional copper wires has rather limited bandwidth to fulfill the increasing demands of nowadays communication needs. Optical interconnect and transmission systems start to take over the copper wires as the high-capacity transmission media. Silicon photonic circuits have the advantages of high transmission speed, low cost, and energy saving. Besides the applications to high-performance computing and cloud services, silicon photonics has been also applied to realize the functionality for bio-medical and military fields. As a result, silicon photonics is becoming the hot research field recently.
This thesis investigates the realization of optical passive elements with the silicon-on-insulator (SOI) platform provided by IMEC. We first design the directional coupler with stable coupling coefficient over a wavelength range of 1300 nm to 1320 nm. The Mach-Zehnder interferometers formed of the directional couplers and waveguides are cascaded to realize optical interleavers. The measured device characteristics of the fabricated couplers and optical interleavers are found to be different from the designed values. After detailed investigations, the 2.5D-FDTD simulation that was adopted for device analysis was found to cause the difference between experiments and simulations. This is due to the fact that the 2.5D-FDTD method use effective index to approximate the vertical direction of the waveguide and thus ignore the coupling along this direction. The simulation using 3D-FDTD results in better matching to the measured ones.
The difference in the coupling coefficient of directional coupler leads to the imperfect characteristics of the optical interleaver where the passband and stopband are not flat. The expected coupling coefficient of the coupler is 0.5 but the real value is 0.82 with the 3D-FDTD simulation. This results in the reduced extinction ratio of the optical interleaver. For practical applications, a temperature controller is used to tune the optical interleaver and obtain a wavelength tuning of 0.061 nm/℃.

目錄 摘要 I Abstract II 致謝 IV 目錄 V 圖目錄 VII 表目錄 X 第一章 研究動機與元件介紹 1 1-1 前言 1 1-2 研究動機 2 1-3 絕緣層覆矽平台 3 1-4 光交織器與通道追蹤 4 1-5 光訊號調變 6 1-6 論文架構 7 第二章 元件結構介紹 8 2-1 2×2方向耦合器 8 2-2 馬赫-曾德爾干涉儀 11 2-3 級聯式馬赫-曾德爾干涉儀 14 第三章 元件模擬設計 17 3-1 模擬方法介紹 17 3-1-1 有限時域差分法 18 3-1-2 有限特徵模態法 20 3-2 非對稱方向耦合器 21 3-3 光交織器 27 第四章 元件量測結果 34 4-1 量測系統架構 34 4-2 寬頻方向耦合器分析 37 4-3 光交織器分析 43 4-3-1 耦合效率對頻譜之影響 48 4-3-2 熱調變對元件之影響 51 第五章 結論與未來發展方向 53 5-1 成果與討論 53 5-2 未來發展方向 54 參考文獻 56

[1] B. Jalali, and S. Fathpour, “Silicon Photonics,” Journal of Lightwave Technology, vol. 24, no. 12, pp. 4600-4615, 2006.
[2] M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-Free Biosensor Arrays Based on Silicon Ring Resonators and High-Speed Optical Scanning Instrumentation,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 16, no. 3, pp. 654-661, 2010.
[3] V. Sorianello, G. De Angelis, T. Cassese, M. Midrio, M. Romagnoli, M. Mohsin, M. Otto, D. Neumaier, I. Asselberghs, J. Van Campenhout, and C. Huyghebaert, “Complex effective index in graphene-silicon waveguides,” Optics Express, vol. 24, no. 26, pp. 29984-29993, 2016/12/26, 2016.
[4] R. Ding, Z. Xuan, P. Yao, D. Prather, M. Hochberg, and T. Baehr-Jones, "100-Gb/s NRZ optical transceiver analog front-end in 130-nm SiGe BiCMOS." pp. 113-114.
[5] Intel. "Intel® Silicon Photonics 100G PSM4 Optical Transceiver Brief," https://www.intel.com/content/www/us/en/architecture-and-technology/silicon-photonics/optical-transceiver-100g-psm4-qsfp28-brief.html.
[6] S. Lischke, D. Knoll, L. Zimmermann, P. Rito, A. C. Ulusoy, A. Awny, D. Petousi, I. G. Lopez, C. Mai, M. Kroh, B. Heinemann, H. Rücker, R. Barth, J. Katzer, M. A. Schubert, M. Kaynak, and A. Mai, "Photonic BiCMOS technology ; Enabler for Si-based, monolithically integrated transceivers towards 400 Gbps." pp. 456-459.
[7] P. Dong, Y.-K. Chen, G.-H. Duan, and D. T. Neilson, “Silicon photonic devices and integrated circuits,” Nanophotonics, vol. 3, no. 4-5, 2014.
[8] W. Bogaerts, M. Fiers, and P. Dumon, “Design Challenges in Silicon Photonics,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 20, no. 4, pp. 1-8, 2014.
[9] 蔡明儒, “利用矽光子製程實現光被動元件,” 國立臺灣科技大學碩士論文, 2016.
[10] M. Antelius, K. B. Gylfason, and H. Sohlström, “An apodized SOI waveguide-to-fiber surface grating coupler for single lithography silicon photonics,” Optics Express, vol. 19, no. 4, pp. 3592-3598, 2011/02/14, 2011.
[11] A. Densmore, D. X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delge, B. Lamontagne, J. H. Schmid, and E. Post, “A Silicon-on-Insulator Photonic Wire Based Evanescent Field Sensor,” IEEE Photonics Technology Letters, vol. 18, no. 23, pp. 2520-2522, 2006.
[12] J. Li, G. Li, X. Zheng, K. Raj, A. V. Krishnamoorthy, and J. F. Buckwalter, “A 25-Gb/s Monolithic Optical Transmitter With Micro-Ring Modulator in 130-nm SoI CMOS,” IEEE Photonics Technology Letters, vol. 25, no. 19, pp. 1901-1903, 2013.
[13] Y. Ma, Y. Zhang, S. Yang, A. Novack, R. Ding, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Ultralow loss single layer submicron silicon waveguide crossing for SOI optical interconnect,” Optics Express, vol. 21, no. 24, pp. 29374-29382, 2013/12/02, 2013.
[14] A. R. M. Zain, N. P. Johnson, M. Sorel, and R. M. D. L. Rue, “Ultra high quality factor one dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator (SOI),” Optics Express, vol. 16, no. 16, pp. 12084-12089, 2008/08/04, 2008.
[15] V. Donzella, A. Sherwali, J. Flueckiger, S. Talebi Fard, S. M. Grist, and L. Chrostowski, “Sub-wavelength grating components for integrated optics applications on SOI chips,” Opt Express, vol. 22, no. 17, pp. 21037-50, Aug 25, 2014.
[16] C. A. Brackett, “Dense wavelength division multiplexing networks: principles and applications,” IEEE Journal on Selected Areas in Communications, vol. 8, no. 6, pp. 948-964, 1990.
[17] S. Cao, J. Chen, J. N. Damask, C. R. Doerr, L. Guiziou, G. Harvey, Y. Hibino, H. Li, S. Suzuki, K. Y. Wu, and P. Xie, “Interleaver Technology: Comparisons and Applications Requirements,” Journal of Lightwave Technology, vol. 22, no. 1, pp. 281-289, 2004.
[18] E. A. J. Marcatili, “Dielectric rectangular waveguide and directional coupler for integrated optics,” The Bell System Technical Journal, vol. 48, no. 7, pp. 2071-2102, 1969.
[19] Q. Fang, J. F. Song, T. Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Ultralow Power Silicon Photonics Thermo-Optic Switch With Suspended Phase Arms,” IEEE Photonics Technology Letters, vol. 23, no. 8, pp. 525-527, 2011.
[20] H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Si Photonic Wire Waveguide Devices,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 12, no. 6, pp. 1371-1379, 2006.
[21] H. Qiu, G. Jiang, T. Hu, H. Shao, P. Yu, J. Yang, and X. Jiang, “FSR-free add-drop filter based on silicon grating-assisted contradirectional couplers,” Optics Letters, vol. 38, no. 1, pp. 1-3, 2013/01/01, 2013.
[22] W. Shi, H. Yun, C. Lin, M. Greenberg, X. Wang, Y. Wang, S. T. Fard, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Ultra-compact, flat-top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon,” Optics Express, vol. 21, no. 6, pp. 6733-6738, 2013/03/25, 2013.
[23] Y. Zhang, Y. He, J. Wu, X. Jiang, R. Liu, C. Qiu, X. Jiang, J. Yang, C. Tremblay, and Y. Su, “High-extinction-ratio silicon polarization beam splitter with tolerance to waveguide width and coupling length variations,” Opt Express, vol. 24, no. 6, pp. 6586-93, Mar 21, 2016.
[24] S.-H. Hsu, “Signal power tapped with low polarization dependence and insensitive wavelength on silicon-on-insulator platforms,” Journal of the Optical Society of America B, vol. 27, no. 5, pp. 941-947, 2010/05/01, 2010.
[25] K. Jinguji, N. Takato, A. Sugita, and M. Kawachi, “Mach-Zehnder interferometer type optical waveguide coupler with wavelength-flattened coupling ratio,” Electronics Letters, vol. 26, no. 17, pp. 1326-1327, 1990.
[26] J. Yu, Y. Du, Y. Xiao, H. Li, Y. Zhai, J. Zhang, and Z. Chen, “High performance micro-fiber coupler-based polarizer and band-rejection filter,” Optics Express, vol. 20, no. 15, pp. 17258, 2012.
[27] M. R. Watts, J. Sun, C. DeRose, D. C. Trotter, R. W. Young, and G. N. Nielson, “Adiabatic thermo-optic Mach-Zehnder switch,” Optics Letters, vol. 38, no. 5, pp. 733-735, 2013/03/01, 2013.
[28] C. Sturm, D. Tanese, H. S. Nguyen, H. Flayac, E. Galopin, A. Lemaitre, I. Sagnes, D. Solnyshkov, A. Amo, G. Malpuech, and J. Bloch, “All-optical phase modulation in a cavity-polariton Mach-Zehnder interferometer,” Nat Commun, vol. 5, pp. 3278, 2014.
[29] X. Xiao, H. Xu, X. Li, Z. Li, T. Chu, Y. Yu, and J. Yu, “High-speed, low-loss silicon Mach–Zehnder modulators with doping optimization,” Optics Express, vol. 21, no. 4, pp. 4116-4125, 2013/02/25, 2013.
[30] H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber,” Optics Express, vol. 15, no. 9, pp. 5711-5720, 2007/04/30, 2007.
[31] W. M. J. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Optics Express, vol. 15, no. 25, pp. 17106-17113, 2007/12/10, 2007.
[32] F. Horst, W. M. Green, S. Assefa, S. M. Shank, Y. A. Vlasov, and B. J. Offrein, “Cascaded Mach-Zehnder wavelength filters in silicon photonics for low loss and flat pass-band WDM (de-)multiplexing,” Opt Express, vol. 21, no. 10, pp. 11652-8, May 20, 2013.
[33] I. Lumerical Solutions. https://www.lumerical.com/.
[34] Y. Kane, “Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media,” IEEE Transactions on Antennas and Propagation, vol. 14, no. 3, pp. 302-307, 1966.
[35] Z. Zhu, and T. G. Brown, “Full-vectorial finite-difference analysis of microstructured optical fibers,” Optics Express, vol. 10, no. 17, pp. 853-864, 2002/08/26, 2002.
[36] M. Z. Alam, J. N. Caspers, J. S. Aitchison, and M. Mojahedi, “Compact low loss and broadband hybrid plasmonic directional coupler,” Optics Express, vol. 21, no. 13, pp. 16029-16034, 2013/07/01, 2013.
[37] Z. Lu, H. Yun, Y. Wang, Z. Chen, F. Zhang, N. A. Jaeger, and L. Chrostowski, “Broadband silicon photonic directional coupler using asymmetric-waveguide based phase control,” Opt Express, vol. 23, no. 3, pp. 3795-806, Feb 09, 2015.
[38] W. Qian, and H. Sailing, “Optimal design of planar wavelength circuits based on Mach-Zehnder Interferometers and their cascaded forms,” Journal of Lightwave Technology, vol. 23, no. 3, pp. 1284-1290, 2005.
[39] M. Tran, J. Hulme, S. Srinivasan, J. Peters, and J. Bowers, "Demonstration of a tunable broadband coupler." pp. 488-489.
[40] G. W. Cong, K. Suzuki, S. H. Kim, K. Tanizawa, S. Namiki, and H. Kawashima, “Demonstration of a 3-dB directional coupler with enhanced robustness to gap variations for silicon wire waveguides,” Opt Express, vol. 22, no. 2, pp. 2051-9, Jan 27, 2014.
[41] B. J. Frey, Douglas B. Leviton, and Timothy J. Madison, "Temperature dependent refractive index of silicon and germanium," 2006.

QR CODE