簡易檢索 / 詳目顯示

研究生: 林俊宏
Chun-Hung Lin
論文名稱: 基於階層式信號拆解架構之高效率子空間多維度參數估測演算法
Efficient Subspace-based Algorithms for Multidimensional Parameter Estimation: A Hierarchical Signal Separation Framework
指導教授: 方文賢
Wen-Hsien Fang
口試委員: 賴坤財
none
王煥宗
none
林士駿
none
廖弘源
none
楊萬興
none
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 168
中文關鍵詞: 到達方位角路徑延遲載波頻率極性旋轉不變信號參數估測多重信號分辨時間延遲跳頻系統低複雜度演算法多維度諧波檢索
外文關鍵詞: Direction of arrival, delay, carrier frequency, polarization, ESPRIT, MUSIC, time delay, frequency hopping systems, low-complexity algorithm, multidimensional harmonic retrieval
相關次數: 點閱:472下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

到達方位角、時間延遲、載波頻率、極性、起始方位角、衰減量、多重弦波頻率和衰減因子等多維度參數的聯合估測,常被應用在信號源定位、接收機設計、雷達顯像、多重輸入多重輸出系統、核磁共振造影及無線通訊頻道探測等信號處理領域。為使估測方法能符合實際應用之要求,本論文特提出許多基於階層式信號拆解技術之高效能且低複雜度的多維度參數估測演算法。
基於階層式信號拆解技術,演算法應用許多低維度之子空間估測方法,以階層樹狀結構來進行各個特定維度的參數估量,在各維度參數應用子空間法進行估測的過程之間,交錯使用投影濾波或空間波束形成對所估測信號做適當的分群,藉以削減雜訊影響提升估量的精準度。在信號拆解的架構下,不僅可將參數相近的信號進行拆解分群,也可進一步提升參數估測的效能。因此,信號在同一維度之參數即使相近,也可以被正確的估測。此外,由於使用階層式的樹狀架構,受估測的參數可自動達成配對,可消弭配對錯誤造成的危害和額外的運算負擔。
本論文所探討和研究的主題發展出高效率且高正確度之子空間估測演算法,包括到達方位角-時間延遲的聯合估測,入射信號於矩形陣列之二維方位角-載波頻率的聯合估測、使用同心交錯耦極天線陣列進行二維方位角-極性的聯合估測和多維度諧波檢索等。本論文應用大量的電腦模擬來進行演算法的效能驗證,與比其他文獻所論述的方法相比,本論文提出的演算法除了可顯著降低運算複雜度外,也提供符合的估測效能,達到高性能和低複雜度兼顧的目標。


Joint estimation of multidimensional parameters, such as direction-of-arrival (DOA), delay, carrier frequency, polarization, direction-of-departure (DOD), fading, and multidimensional sinusoidal frequency and decaying factor, arises in various facets of signal processing applications such as source location, receiver design, radar imaging, multiple-input-multiple output (MIMO) systems, nuclear magnetic resonance spectroscopy and wireless channel sounding. To be more amenable to practical applications, in this dissertation, we propose several efficacious, yet low complexity algorithms for the multidimensional parameter estimation using a novel Hierarchical Signal Separation (HISS) technique.

Based on the HISS, several of lower-dimensional subspace-based algorithms are employed in a hierarchical tree structure to estimate the parameters in each specific dimension. In between every other subspace-based algorithm, a set of filtering/beamforming processes is invoked to partition the signals into appropriate groups and to remove the additive noise to enhance the estimation accuracy. Such a signal separation scheme not only partitions the signals with close parameters into separate groups, but it also enhances the parameter estimation accuracy. Consequently, signals can be well resolved even with very close parameters in the same dimension. In addition, the parameter estimation proceeds in a hierarchical tree structure, so
the estimated parameters are automatically paired without extra computational overhead.

Our investigations of this dissertation include the development of the efficient, yet high accuracy subspace-based algorithms for joint DOA and delay estimation in the Frequency Hopping (FH) systems, joint two-dimensional (2-D) angle and carrier frequency estimation of the signals impinging on a uniform rectangular array (URA), joint 2-D angle and polarization estimation using co-centered crossed dipole (CCD) pairs, and multidimensional harmonic retrieval (MHR). Conducted simulations show that the developed algorithms, calling for drastically reduced computations, can provide satisfactory performance compared with previous works, and thus strike a better tradeoff between performance and complexity.

1 INTRODUCTION 1 1.1 Review of Previous Approaches 3 1.2 Overview of the Dissertation 6 2 PARAMETRIC DATA MODELS 10 2.1 Generic Data Model 10 2.1.1 Angle and Delay Estimation in FH Systems 11 2.1.2 Angle and Carrier Frequency Estimation 14 2.1.3 Angle and Polarization Estimation 15 2.1.4 MIMO Channel Identification 18 2.1.5 Nuclear Magnetic Resonance Spectroscopy 20 2.1.6 Multidimensional Harmonic Retrieval 21 2.2 Hierarchical Signal Separation Technique 22 2.2.1 Philosophy of HISS 23 2.2.2 Essence of HISS 25 2.3 Summary 29 3 JOINT DIRECTION OF ARRIVAL AND DELAY ESTIMATION IN FREQUENCY HOPPING SYSTEMS 30 3.1 Introduction 30 3.2 Efficient Algorithm for Joint DOA and Delay Estimation 33 3.3 Performance Analysis 39 3.3.1 Rough DOA Estimates and the Residues due to Imperfect Spatial beamforming 39 3.3.2 MSE of the Delay Estimates 41 3.3.3 MSE of the Precise DOA Estimates 44 3.4 Simulations and Discussions 48 3.5 Summary 50 4 EFFICIENT JOINT TWO-DIMENSIONAL DIRECTIONS OF ARRIVAL AND CARRIER FREQUENCY ESTIMATION 55 4.1 Introduction 55 4.2 Proposed 1-D Unitary ESPRIT-Based Algorithm 57 4.3 Simulations and Discussions 69 4.4 Summary 70 5 EFFICIENT ALGORITHM FOR TWO-DIMENSIONAL DIRECTIONS OF ARRIVAL AND POLARIZATION ESTIMATION WITH CROSSED DIPOLES 74 5.1 Introduction 74 5.2 Proposed Low-complexity Algorithm 77 5.2.1 Coarse 2-D Angle Estimation 78 5.2.2 Polarization Estimation 80 5.2.3 Refined 2-D Angle Estimation 81 5.2.4 Summary of the Proposed Algorithm and Related Discussions 84 5.3 Simulations and Discussions 87 5.4 Summary 88 6 EFFICIENT MULTIDIMENSIONAL HARMONIC RETRIEVAL 94 6.1 Introduction 94 6.2 Proposed 1-D Unitary ESPRIT-Based Algorithm 96 6.3 Simulations and Discussions 104 6.4 Summary 105 7 CONCLUSIONS 112 7.1 Summary of the Dissertation 112 7.2 Future Perspectives 114 Bibliography 117 A Proof of (3.19) 129 B Proof of (3.22) 133 C Proof of (4.9), (4.15), and (4.20) 135 D Eigenvector/eigenvalue of Rfi;j;l in (4.19) 138 E Proof of (4.23) 140 F Proof of (5.7), (5.13), (5.20) and (5.24) for the statistics of the noise in each processing stage 142 G Implementation of ESPRIT-based on RYi;j in (5.12) 145

[1] L. C. Godara, “Application of antenna arrays to mobile communications, part II: Beam-forming and direction-of-arrival considerations," IEEE Proc., vol. 85, no. 8, pp. 1195-1245, Aug. 1997.
[2] F. Belloni, V. Ranki, A. Kainulainen, and A. Richter, “Angle-based indoor positioning system for open indoor environments," in Proc. IEEE Workshop on Positioning, Navigation and Communication, pp. 261-265, 2009.
[3] A. A. Amico and M. Morelli, “Joint channel and DOA estimation for multicarrier CDMA uplink transmissions," IEEE Trans. Veh. Technol., vol. 58, no. 1, pp. 116-125, Jan. 2009.
[4] P. Hande, L. Tong, and A. Swami, “Multipath delay estimation for frequency hopping systems," Journal of VLSI Signal Processing, vol. 30, pp. 163-178, 2002.
[5] A. Boukerche, H. A. B. F. Oliveira, E. F. Nakamura, and A. A. F. Loureiro, “Localization systems for wireless sensor networks," IEEE Wireless Commun., vol. 14, no. 6, pp. 6-12, Dec. 2007.
[6] M. NissilAa and S. Pasupathy, “Joint estimation of carrier frequency offset and statistical parameters of the multipath fading channel," IEEE Trans. communi- cations, vol. 54, no. 6, pp. 1038-1048, 2006.
[7] M. Haardt and J. A. Nossek, “3-D unitary ESPRIT for joint 2-D angle and carrier estimation," in Proc. IEEE Int'l Conf. Acoustics, Speech, and Signal Processing, pp. 255-258, 1997.
[8] R. D. Balakrishnan, B. S. Nugroho, and H. M. Kwon, “Joint DOA estimation and multi-user detection for WCDMA using DELSA," in Proc. IEEE International Symposium on Spread Spectrum Techniques and Applications, pp. 879-884, 2004.
[9] M. A. Jensen and J. W. Wallace, “A review of antennas and propagation for MIMO wireless communications," IEEE Trans. Antennas and Propagat., vol. 52, no. 11, pp. 2810-2824, Nov. 2004.
[10] R. U. Nabar, H. Bolcskei, V. Erceg, D. Gesbert, A. J. Paulraj, “Performance of multiantenna signaling techniques in the presence of polarization diversity," IEEE Trans. Signal Processing, vol. 50, no. 10, pp. 2553-2562, Oct. 2002.
[11] J. Li and R. T. Compton, Jr., “Angle and polarization estimation using ESPRIT with a polarization sensitive array," IEEE Trans. Antennas Propagations, vol. 39, no. 9, pp. 1376-1383, Sep. 1991.
[12] J. H. Winters, J. Salz, and R. D. Gitlin, “The impact of antenna diversity on the capacity of wireless communication systems," IEEE Trans. Communications, vol. 42, no. 4, pp. 1740-1751, Apr. 1994.
[13] A. Klouche-Djedid, and M. Fujita, “Adaptive array sensor processing applications for mobile telephone communications," IEEE Trans. Vehicular Technology, vol. 45, no. 3, pp. 405-416, Aug. 1996.
[14] J. Li, P. Stoica and D. Zheng, “Efficient Direction and Polarization Estimation with a COLD Array," IEEE Trans. Antennas and Propagations,, vol. 44, no. 4, pp. 539-547, Apr. 1996.
[15] W. P. Jason and A. Manikas, “Diversely polarized arrays in DS-CDMA: A space- time channel estimation approach," in Proc. IEEE Int'l Conf. Acoustics, Speech, and Signal Processing, pp. 13-17, 2002.
[16] Q. Yuan, Q. Chen ,and K. Sawaya, “MUSIC based DOA finding and polarization estimation using USV with polarization sensitive array antenna," in Proc. IEEE Radio and Wireless Symposium, pp. 339-342, 2006.
[17] C. B. Dietrich, Jr., K. Dietze, J. R. Nealy, and W. L. Stutzman, “Spatial, polarization, and pattern diversity for wireless handheld terminals," IEEE Trans. Antennas and Propagat., vol. 49, no. 9, pp. 1271-1281, Sep. 2001.
[18] Y. Kilic, M. Koca, and E. Anarim, “Space-time-polarization diversity in multiple-input mutiple-ouput communication systems, "in Proc. IEEE Int'l Conf. AFRICON, pp. 1-6, Sep. 2009.
[19] A. M. Haimovich, R. S. Blum, and L. J. Cimini, “MIMO Radar with Widely Separated Antennas," Signal Processing Magazine, vol. 25, no. 1, pp. 116-129, 2008.
[20] J. Li and P. Stoica, MIMO radar Signal Processing. New York: Wiley, 2009.
[21] X. Liu, N. D. Sidiropoulos, and T. Jiang, “Multidimensional harmonic retrieval with applications in MIMO wireless channel sounding," in Space-Time Processing for MIMO Communications, A. Gershman and N. Sidiropoulos, Eds. New York: Wiley, 2005.
[22] I. Bekkerman and J. Tabrikian, “Target detection and localization using MIMO radars and sonars," IEEE Trans. Signal Process., vol. 54, no. 10, pp. 3873-3883, Oct. 2006.
[23] G. L. Stuber, J. R. Barry, S. W. Mclaughlin, Y. Li, M. A. Ingram and T. G. Pratt, “Broadband MIMO-OFDM wireless communications," Proc. of the IEEE vol. 92, pp. 271-294, Feb. 2004.
[24] N. Lehmann, A. M. Haimovich, R.S. Blum, and L. Cimini, “MIMO-radar application to moving target detection in homogenous clutter," in Adaptive Sensor Array Processing Workshop at MIT Lincoln Laboratory, Waltham, MA, July 2006.
[25] J. Li and P. Stoica, “MIMO radar with colocated antennas," IEEE Trans. Signal Process. Mag., vol. 24, no. 5, pp. 106-114, Sep. 2007.
[26] L. Xu, J. Li, and P. Stoica, “Adaptive techniques for MIMO radar," in Proc. IEEE Workshop Sensor Array and Multi-channel Processing, Waltham, MA, pp. 258-262, July 2006.
[27] E. Fishler, A. Haimovich, R. Blum, L. Cimini, D. Chizhik, and R. Valenzuela, “Spatial diversity in radars-Models and detection performance," IEEE Trans. Signal Process., vol. 54, no. 3, pp. 823-838, Mar. 2006.
[28] G. J. Foschini, “Layered space-time architecture for wireless communication in a fading environment when using multiple antennas," Bell Labs Tech. J., vol. 1, no. 2, pp. 41-59, 1996.
[29] A. B. Gershman and N. D. Sidiropoulos, Space-Time Processing for MIMO Communications. John Wiley & Sons, 2005.
[30] L. Xu, J. Li, and P. Stoica, “Target detection and parameter estimation for MIMO radar systems," IEEE Trans. Aerosp. Electron. Syst., vol. 44, no. 3, pp. 927-939, July 2008.
[31] N. H. Lehmann, A.M. Haimovich, R.S. Blum, and L.J. Cimini, “High resolution capabilities of MIMO radar," in Proc. Asilomar Conf. Signals, Systems and Computers, pp. 25-30, Nov. 2006.
[32] D. Nion and N. D. Sidiropoulos, “Tensor algebra and multidimensional harmonic retrieval in signal processing for MIMO radar," IEEE Trans. Signal Process., vol. 58, no. 11, pp. 5693-5705, Nov. 2010.
[33] J. Liu and X. Liu, “An eigenvector-based approach for multidimensional frequency estimation with improved identifiability," IEEE Trans. Signal Process., vol. 54, no. 12, pp. 4543-4556, Dec. 2006.
[34] M. Akcakaya and A. Nehorai, “MIMO radar sensitivity analysis for target detection," IEEE Trans. Signal Process., vol. 59, no. 7, pp. 3241-3250, July 2011.
[35] N. Lehmann, E. Fishler, A. Haimovich, R. Blum, D. Chizhik, L. Cimini, and R. Valenzuela, “Evaluation of transmit diversity in MIMO-radar direction finding," IEEE Trans. Signal Process., vol. 55, no. 5, pp. 2215-2225, May 2007.
[36] J. Cavanagh, W. J. Fairbrother, A. G. Palmer, N. J. Skelton, and M. Rance, “Protein NMR Spectroscopy: Principles and Practice," San Diego, CA: Academic Press, 2006.
[37] A. Bax and L. Lerner, “Two-dimensional nuclear magnetic resonance spectroscopy," Science, vol. 232, pp. 960-967, May 1986.
[38] Y. Li, J. Razavilar, and K. J. Ray, “A high-resolution technique for multidimensional NMR spectroscopy," IEEE Trans. Biomed. Eng., vol. 45, no. 1, pp. 78-86, Jan. 1998.
[39] E.-H. Djermoune, G. Kasalica, and D. Brie, “Estimation of the parameters of two-dimensional NMR spectroscopy signals using an adapted subband decomposition," in Proc. IEEE Int'l Conf. Acoustics, Speech, and Signal Processing, vol. 3, Las Vegas, Nevada, pp. 3641-3644, Apr. 2008.
[40] K. Nishiyama and T. Mita, “High resolution NMR spectroscopy using a recursive algorithm," IEEE Trans. Biomedical Engineering., vol. 36, no. 2, pp. 222-231, Feb. 1989.
[41] J. Razavilar, Y. Li, and K. J. R. Liu, “Parametric estimation of NMR spectroscopy using matrix pencil," in Proc. IEEE Int'l Conf. Engineering in Medicine and Biology Society, pp. 493-494, Feb. 1995.
[42] I. Y. H. Gu, M. Billeter, M. R. Sharafy, V. A. Sorkhabi, J. Fredriksson and D. K. Staykova, “Parameter estimation of multidimensional NMR signals based on high-resolution subband analysis of 2D NMR projections," in Proc. IEEE Int'l Conf. Acoustics, Speech, and Signal Processing, pp. 497-500, 2009.
[43] A. L. Swindlehurst, “Time delay and spatial signature estimation using known asynchronous signals," IEEE Trans. Signal Processing, vol. 46, pp. 449-461, no.2, Feb. 1998.
[44] W. Zhi, C. C. Ko, and F. Chin, “Multi-hop ML based delay and angle estimation for multipath wideband FH signals," in Proc. IEEE Vehicular Technology Conf., pp. 157-161, 2004.
[45] K. BECKER, “Passive localization of frequency-agile radars from angle and frequency measurements," IEEE Trans. Aerospace and Electronic Systems, vol. 35, no. 4, pp. 1129-1144, Oct. 1999.
[46] M. C. Vanderveen, C. B. Papadias and A. Paulraj, “Joint angle and delay estimation (JADE) for multipath signals arriving at an antenna array," IEEE Communications Letters, vol. 1, no. 1, pp. 12-14, Jan. 1997.
[47] J. Picheral and U. Spagnolini, “Parametric estimation of space-time channels with spatially correlated noise by JADE-ESPRIT," in Pro. IEEE Int'l Symposium Signal Processing and Its Applications, pp. 415-418, 2003.
[48] M. Chenu-Tournier, P. Chevalier, and J.-P. Barbot, “A parametric spatio-temporal channel estimation technique for FDD UMTS uplink," in Proc. IEEE Sensor Array and Multichannel Signal Processing Workshop, pp. 12 -16, 2000.
[49] Z. Gu, E. Gunawan, and Z. Yu, “Joint spatiotemporal parameter estimation for DS-CDMA system in fast fading multipath channel," in Proc. IEEE Vehicular Technology Conf., pp. 28-32, 2001.
[50] S. Wang, J. CaRery, and X. Zhou, “Analysis of a joint space-time DOA/FOA estimator using MUSIC," in Proc. IEEE Int'l Symposium Personal, Indoor and Mobile Radio Communications, pp. B138-B142, 2001.
[51] A. J. van der Veen, M. C. Vanderveen, and A. Paulraj, “Joint angle and delay estimation (JADE) using shift-invariance properties," IEEE Trans. Signal Processing, vol. 46, no. 2, pp. 405-418, Feb. 1998.
[52] M. C. Vanderveen, A. J. van der Veen, and A. Paulraj, “Estimation of multipath parameters in wireless communications," IEEE Trans. Signal Processing, vol. 46, no. 3, pp. 682-690, Mar. 1998.
[53] Y.-F. Chen and M. D. Zoltowski, “Joint angle and delay estimation for DS- CDMA with application to reduced dimension space-time RAKE receivers ," in Proc. IEEE Int'l Conf. Acoustics, Speech, and Signal Processing, pp. 2933-2936, 1999.
[54] J. J. Blanz, A. Papathanassiou, M. Haardt, I. Furio, and P. W. Baier, “Smart antennas for combined DOA and joint channel estimation in time-Slotted CDMA mobile radio system with joint-detection," IEEE Trans. Vehicular Technology, vol. 49, no. 2, pp. 293-306, Mar. 2000.
[55] Y.-H. Chen and C.-H. Chen, “Direction-of-arrival and frequency estimations for narrowband sources using two single rotation invariance algorithms with the marked subspace," IEE Proc. Radar Signal Processing, vol. 139, pp. 297-300, 1992.
[56] M. Pesavento, A. B. Gershman, and M. Haardt, “Unitary root-MUSIC with a real valued eigendecomposition: A theoretical and experimental performance study," IEEE Trans. Signal Process., vol. 48, no. 5, pp. 1306-1314, May 2000.
[57] A. J. van der Veen, P. B. Ober, and E. F. Deprettere, “Azimuth and elevation computation in high resolution DOA estimation," IEEE Trans. Signal Processing, vol. 40, no. 7, pp. 1828-1832, July 1992.
[58] A. H. Tewfik and W. Hong, “On the application of uniform linear array bearing estimation techniques to uniform circular arrays," IEEE Trans. Signal Processing, vol. 40, no. 4, pp. 1008 -1011, Apr. 1992.
[59] U. Oktel and R. L. Moses, “High-resolution 3-D direction-of-arrival determination for urban mobile radio," in Proc. IEEE Int'l Symposium Antennas and Propagations, vol. 45, pp. 672 -682, Apr. 1997.
[60] M. D. Zoltowski and C. P. Mathews, “Real-time frequency and 2-D angle estimation with sub-nyquist spatio-temporal sampling," IEEE Trans. Signal Processing, vol. 42, no. 10, pp. 2781 -2794, Oct. 1994.
[61] M. D. Zoltowski, M. Haardt, and C. P. Mathews, “Closed-form 2-D angle estimation with rectangular arrays in element space or beamspace via unitary ESPRIT," IEEE Trans. Signal Processing, vol. 44, no. 2, pp. 316-328, Feb. 1996.
[62] J. C. Mosher and R. M. Leahy, “Recursive MUSIC: a framework for EEG and MEG source localization," IEEE Trans. Biomedical Engineering, vol. 45, no. 11, pp. 1342-1354, Nov. 1998.
[63] B. Friedlander and A. J. Weiss, “Direction finding in the presence of mutual coupling," in Proc. IEEE Int'l Symposium Antennas and Propagations, vol. 39, no. 3, pp. 273-284, Mar. 1991.
[64] J.-D. Lin, W.-H. Fang, and J.-T. Chen, “Constrained TST MUSIC for joint spatio-temporal channel parameter estimation in DS/CDMA," Wireless Communication and Mobile Computing, vol. 5, pp. 57-67, Jan. 2005.
[65] A. L. Swindlehurst and P. Stoica, “Maximum likelihood methods in radar array signal processing," Proceedings of the IEEE, vol. 86, no. 2, pp. 421-441, 1998.
[66] B. Ottersten, M. Viberg, and T. Kailath, “Analysis of subspace fitting and ML techniques for parameter estimation from sensor array data," IEEE Trans. Signal Processing, vol. 40, no. 3, pp. 590-600, Mar. 1992.
[67] J.-T. Chen, A. Paulraj, and U. Reddy, “Multichannel maximum-likelihood sequence estimation (MLSE) equalizer for GSM using a parametric channel model," IEEE Trans. Communications, vol. 47, no. 1, pp. 53-63, Jan. 1999.
[68] M. P. Clark, and L. L. Scharf, “Two-dimensional modal analysis based on maximum likelihood," IEEE Trans. Signal Processing, vol. 42, no.6, pp. 1443-52, Jun. 1994.
[69] M. D. Zoltowski and T.-S. Lee, “Beamspace ML bearing estimation incorporating low-angle geometry," IEEE Trans. Aerospace and Electronic Systems, vol. 27, no. 3, pp. 441-458, May 1991.
[70] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory. Prentice-Hall, 1993.
[71] J. A. Fessler and A. O. Hero, “Space-alternating generalized expectation maximization algorithm," IEEE Trans. Signal Process., vol. 42, no. 10, pp. 2664- 2677, Oct. 1994.
[72] B. H. Fleury, M. Tschudin, R. Heddergott, D. Dahlhaus, and K. I. Pedersen, “Channel parameter estimation in mobile radio environments using the SAGE algorithm," IEEE Journal on Selected Areas in Communications, vol. 17, pp. 434-450, Mar. 1999.
[73] R. O. Schmidt, “Multiple emitter location and signal parameter estimation," in Proc. RADC Spectral Estimation Workshop, Rome, pp. 243-258, NY. 1979. 122
[74] R. Roy and T. Kailath, “ESPRIT-Estimation of signal parameters via rotational invariance techniques," IEEE Tran. Acoustics, Speech, and Signal Processing, vol. 37, no. 7, pp. 984-995, July 1989.
[75] L. Ge, T. Chen, and X. Huang, “Simultaneous frequency and direction estimation from parallel-array data," IEE Proc. Radar, Sonar Navig., vol. 142, pp. 6-10, 1995.
[76] Y.-Y. Wang, J.-T. Chen, and W.-H. Fang, “TST-MUSIC for joint DOA-delay estimation," IEEE Trans. Signal Processing, vol. 46, no. 4, pp. 721-729, Apr. 2001.
[77] Y.-Y. Wang, J.-T. Chen, and W.-H. Fang, “Joint estimation of the DOA and delay based on the TST-ESPRIT in a wireless channel," in Proc. IEEE Signal Processing Workshop on Signal Processing Advances in Wireless Communications, Taipei, Taiwan, pp. 302-305, 2001.
[78] Y.-Y. Wang, J.-T. Chen, and W.-H. Fang, “A one-dimensional tree-structure based algorithm for DOA-delay joint estimation," in Chapter 7 of Advances in Direction of Arrival Estimation,, S. Chandran ed., 2006.
[79] J.-D. Lin, W.-H. Fang, Y.-Y. Wang, and J.-T. Chen, “FSF MUSIC for joint DOA and frequency estimation and its performance analysis," IEEE Trans. Signal Processing, vol. 54, no. 12, pp. 4529-4542, Dec. 2006.
[80] H. L. Van Trees, Optimun Array Processing. Wiley-Interscience, 2002.
[81] R. Peterson, R. Ziemer, and D. Borth, Introduction to Spread-Spectrum Communication. Prentice-Hall, 1995.
[82] D. Torrieri, “Future army mobile multiple-access communications," in Proc. IEEE Int'l Conf. Military Communication, pp. 650-654, 1997.
[83] D. Torrieri, Principles of Spread-Spectrum Communication Systems. Springer Science+Business Media, LLC 2011.
[84] T. Jia and A. Duel-Hallen, “Improved channel allocation for multicarrier CDMA with adaptive frequency hopping and multiuser detection," IEEE Trans. Commun., vol. 57, no. 11, pp. 3389-3396, Nov. 2009.
[85] D. Torrieri, “Mobile frequency-hopping CDMA systems," IEEE Trans. Commun., vol. 48, no. 8, pp. 1318-1327, Aug. 2000.
[86] Q. Bao, C. C. Ko, and W. Zhi, “DOA estimation under unknown mutual coupling and multipath," IEEE Trans. Aerospace and Electronic Systems, vol. 41 pp. 565-573, Apr. 2005.
[87] X. Liu, N. D, Sidiropoulos, and A. Swami, “Code-blind reception of frequency hopped signals over multipath fading channels," in Proc. IEEE Int'l Conf. Acoustics, Speech, and Signal Processing, pp. IV592-IV595, 2003.
[88] P. D. Rasky, G. M. Chiasson, D. E. Borth and R. L.Peterson, “Slow frequency hop TDMA/CDMA for macrocellular personal communications," IEEE Personal Communications, vol. 1, no. 2, pp. 26-35, 1994.
[89] J. C. Haartsen, “The bluetooth radio system," IEEE Personal Communications, vol. 7, pp. 28-36, Feb. 2000.
[90] S. Gezici, “Mean acquisition time analysis of fixed-step serial search algorithms," IEEE Tran. wireless commun., vol. 8, no. 3, pp. 1096-1101, Mar. 2009.
[91] R. L. Haupt, Antenna Arrays- A Computational Approach. New Jersy: John Willy & Sons, 2010.
[92] G. A. Deschamps, “Geometrical representation of the polarization of a plane electromanagnetic wave," IRE Proc., vol. 39, no. 5, pp. 540-544, May 1951.
[93] J. L. Volakis, R. C. Johnson and H. Jasik, Antenna Engineering Handbook. 4th ed. New York: McGraw-Hill, 2007.
[94] J. Li and R.T. Compton, Jr., “Two-dimensional angle and polarization estimation using the ESPRIT algorithm," IEEE Trans. Antennas and Propagat., vol. 40, no. 5, pp. 550-555, Sep. 1992.
[95] F. J. Chen, S. Kwong and C. W. Kok, “Two-dimensional angle and polarization estimation using ESPRIT without pairing," in Proc. IEEE Int'l Symposium on Circuits and Systems, pp. 1063-1066, 2006.
[96] Y. Hua, “A Pencil-MUSIC algoritm for finding two-dimensional angles and polarizations using crossed dipoles," IEEE Trans. Antennas Propagations, vol. 41, no. 3, pp. 370-376, Mar. 1993.
[97] M. Steinbauer, A. F. Molisch, and E. Bonek, “The double-directional raido channel," IEEE Antennas Propag. Mag., vol. 43, No. 4, pp. 51-63, Aug. 2003.
[98] F.C. Robey, S. Coutts, D. Weikle, J. C. McHarg, and K. Cuomo, “MIMO radar theory and experimental results," in Proc. Asilomar Conference on Signals, Systems and Computers, pp. 300-304, Nov. 2004.
[99] M. Haardt, C. Brunner, and J. H. Nossek, “Efficient high-resolution 3-D channel sounding," in Proc. IEEE Int'l Conf. Vehicular Technology, vol. 1, pp. 164-168, May 1998.
[100] S. Moshavi, “Multi-user detection for DS-CDMA communications," IEEE Communication Magazine, pp. 124-136, Oct. 1996.
[101] M. A. Hernandez, L. Genis, and R. Calders, “Subspace based estimation of parameters and linear space-time multiuser detection for WCDMA systems," in Proc. IEEE Symposium Spread Spectrum Technology and Application, pp. 249- 253, Sep. 2000.
[102] S. Verdu, Multi-User Detection. Prentice-Hall, 1998.
[103] X. Wang and H. V. Poor, “Space-time multiuser detection in multipath CDMA channels," IEEE Trans. Signal Processing, vol. 47, no. 9, pp. 2356 -2374, Sep. 1999.
[104] S. Y. Kung, K. I. Diamantaras, and J. S. Taur, “Adaptive principal component EXtraction (APEX) and applications," IEEE Trans. Signal Process., vol. 42, no. 5, pp. 1202-1217, MAY 1994.
[105] G. Su and M. Morf, “Modal decomposition signal subspace algorithms," IEEE Trans. Acoustics Speech, Signal Processing, vol. 34, no. 3, pp. 585-602, June 1986.
[106] I. Ziskind and M. Wax, “Maximum likelihood localization of multiple sources by alternating projection," IEEE Trans. Acoustics Speech, Signal Processing, vol. 36, no. 10, pp. 1553-1560, Oct. 1988.
[107] P. Stoica, P. Handel, and A. Nehoral, “Improved sequential MUSIC," IEEE Trans. Aerospace and Electronic Systems, vol. 31, no. 4, pp. 1230-1239, Oct. 1995.
[108] J. M. Kim, O. K. Lee, and J. C. Ye, “Improving noise robustness in subspace- based joint sparse recovery," IEEE Trans. Signal Process., vol. 60, no. 11, pp. 5799-5809, Nov. 2012.
[109] M. Eric, M. L. Dukic, and M. Obradovic, “Frequency hopping signal separation by spatio-frequency analysis based on the MUSIC method," in Proc. IEEE Int'l Symposium Spread Spectrum Techniques and Applications, pp. 78 - 82, 2000.
[110] G. G. Raleigh and T. Boros, “Joint space-time parameter estimation for wireless communication channels," IEEE Trans. Signal Processing, vol. 46, pp. 1333-1343, May 1998.
[111] M. Wax and T. Kailath, “Detection of signals by information theoretic criteria," IEEE Trans. Acoustics Speech, Signal Processing, vol. 33, no. 2, pp. 387-392, Apr. 1985.
[112] Y. Bresler and A. Macovski, “On the number of signals resolvable by a uniform linear array," IEEE Trans. Acoustics Speech, Signal Processing, vol. 34, no. 6, pp. 1361-1375, Dec. 1986.
[113] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed. Johns Hopkins University Press, 1996
[114] P. Stoica and A. Nehorai, “Performance study of conditional and unconditional direction-of-arrival estimation," IEEE Trans. Acoust., Speech, Signal Processing, vol. 38, no. 10, pp. 1783-1795, Oct. 1990.
[115] P. Stoica and A. Nehorai, “MUSIC, maximum likelihood, and Cramer-Rao bound," IEEE Trans. Acoust., Speech, Signal Processing, vol. 37, no. 5, pp. 720- 741, May 1989.
[116] J. H. Wilkinson, The Algebraic Eigenvalue Problem. London, U.K.:Oxford Univ. Press, 1965.
[117] K. C. Sharman, T. S. Durrani, M. Wax, and T. Kailath, “Asymptotic performance of eigenstructure spectral analysis method," in Proc. IEEE Int'l Conf. Acoustics, Speech, and Signal Processing, San Diego, California, pp. 45.5.1-45.5.4, 1984.
[118] B. Porat and B. Friedlander, “Analysis of the asymptotic relative efficiency of the MUSIC algorithm," IEEE Trans. Acoust., Speech, Signal Processing, vol. 36, no. 4, pp. 532-544, Apr. 1988.
[119] A. Papoulis and S. U. Pillai, Probability, Random Variables, and Stochastic Processes. McGraw-Hill, 2002.
[120] S. M. Ross, Introduction to Probability and Statistics for Engineers and Scientists. John Wiley & Sons, Inc., 1987.
[121] J.-D. Lin, W.-H. Fang, and C.-H. Lin, “Further results of the analysis of the MUSIC for closely spaced, non-equal power plane waves," in Proc. IEEE Int'l Conf. Acoustics, Speech, and Signal Processing, pp. 809-812, Hawaii, USA, 2007.
[122] R. O. Schmidt, “Multiple emitter location and signal parameter estimation," IEEE Trans. Antennas and Propagat., vol. AP-34, no. 3, pp. 276-280, Mar. 1986.
[123] M. Haardt and J. A. Nossek, “Unitary ESPRIT: how to obtain increased estimation accuracy with a reduced computational burden," IEEE Trans. Signal Processing, vol. 43, no. 5, pp. 1232-1242, May 1995.
[124] P. Strobach, “Total least squares phased averaging and 3-D ESPRIT for joint azimuth-elevation-carrier estimation," IEEE Trans. Signal Processing, vol. 49, no. 1, pp. 54-62, Jan. 2001.
[125] C.-Y. Qi, Y.-L. Wang, Y.-S. Zhang, and H. Chen, “A space-time processing approach to joint estimation of signal frequency and 2-D direction of arrival," in Proc. IEEE AP-S/URSI, vol. 3A, pp. 370-373, 2005.
[126] N. Tayem, H.M. Kwon, S. Min, and D. Kang, “FOA and 2-D DOA estimation with propagator method," in Proc. IEEE Int'l Conf. Vehicular Technology Conference, vol. 4, pp. 2211-2215, 2005.
[127] A. N. Lemma, A.-J. van der Veen, and E. F. Deprettere, “Analysis of joint angle- frequency estimation using ESPRIT," IEEE Trans. Signal Processing, vol. 51, no. 5, pp. 1264-1283, May 2003.
[128] S. Supakwong, A. Manikas, and A. G. Constantinides, “Analysis of three- parameter diversely polarized array manifold," in Proc. IEEE Personal, Indoor and Mobile Radio Communications, pp. 1-5, 2008.
[129] I. Ziskind and M.Wax, “Maxmimum likelihood localization of diversely polarized sources by simulated annealing," IEEE Trans. Antennas and Propagat., vol. 38, no. 7, pp. 1111-1114, July 1990.
[130] K. T. Wong and M. D. Zoltowski, “Self-initiating MUSIC-based direction finding and polarization estimation in spatio-polarizational beamspace," IEEE Trans. Antennas and Propagat., vol. 48, no. 8, pp. 1235-1245, Aug. 2000.
[131] H. Jiacai, S. Yaowu, and T. Jianwu, “Joint estimation of DOA, frequency, and polarization based on cumulants and UCA," Journal of Systems Engineering and Electronics, vol. 18, no. 4, pp. 704-709, Dec. 2007.
[132] X. Gao, X. Zhang, W. Chen, and Y. Shi, “Joint DOA and polarization estimation for L-shaped polarization sensitive array," in Proc. IEEE Int'l Conf. Information Science and Engineering, pp. 591-595, 2009.
[133] M. N. E. Korso, R. Boyer, A. Renaux, and S. Marcos, “Statistical resolution limit of the uniform linear cocentered orthogonal loop and dipole array," IEEE Trans. Signal Processing, vol. 59, no. 1, pp. 425-431, Jan. 2011.
[134] A. J. Weiss and B. Friedlander, “Performance analysis of diversely polarized antenna arrays," IEEE Trans. Signal Processing, vol. 39, no. 7, pp. 1589-1603, July 1991.
[135] M. Haardt, F. Roemer, and G. Del Galdo, “Higher-order SVD-based subspace estimation to improve the parameter estimation accuracy in multidimensional harmonic retrieval problems," IEEE Trans. Signal Process., vol. 56, no. 7, pp. 3198-3213, July 2008.
[136] X. Liu and N. D. Sidiropoulos, “On constant modulus multidimensional harmonic retrieval," in Proc. IEEE Int'l Conf. Acoustics, Speech, and Signal Process., vol. 3, Orlando, FL, pp. 2977-2980, May 2002.
[137] K. N. Mokios, N. D. Sidiropoulos, M. Pesavento and C. F. MecklenbrAauker, “On 3-D Harmonic retrieval for wireless communication channel sounding," in Proc. IEEE Int'l Conf. Acoustics, Speech, and Signal Processing, vol. 2, Montreal, Quebec, Canada, pp. II89-II92, May 2004.
[138] M. Pesavento, C. F. MecklenbrAauker, and J. F. BAohme, “Multidimensional rank reduction estimator for parametric MIMO channel models," EURASIP J. Appl. Signal Process., vol. 2004, no. 9, pp. 1354-1363, 2004.
[139] J. Liu and X. Liu, “Eigenvector-based N-D frequency estimation from sample covariance matrix," IEEE Signal Process. Lett., vol. 14, no. 3, pp. 209-212, Mar. 2007.
[140] A.-J. van der Veen and A. Paulraj, “An analytical constant modulus algorithm," IEEE Trans. signal Process., vol. 44, no. 5, pp. 1413-1424, May 1996.
[141] R. C. de Lamare, M. Haardt, and R. Sampaio-Neto, “Blind adaptive constrained reduced-rank parameter estimation based on constant modulus design for CDMA interference suppression," IEEE Trans. Signal Process., vol. 56, no. 6, pp. 2470- 2482, June 2008.
[142] M. Sorensen, L. D. Lathauwer, and L. Deneire, “Parafac with orthogonality in one mode and applications in DS-CDMA systems," in Proc. IEEE Int'l Conf. Acoustics, Speech, and Signal Processing, pp. 4142-4145, 2010.
[143] D. Nion and N. D. Sidiropoulos, “Adaptive Algorithms to Track the PARAFAC Decomposition of a Third-Order Tensor," IEEE Trans. Signal Processing, vol. 57, no. 6, pp. 2299-2310, June 2009.
[144] I. F. Gorodnitsky and B. D. Rao, “Sparse signal reconstruction from limited data using FOCUSS: A re-weighted minimum norm algorithm," IEEE Trans. Signal Process., vol. 45, no. 3, pp. 600-616, Mar. 1997.
[145] P. Stoica, P. Babu, and J. Li, “SPICE: A sparse covariance-based estimation method for array processing," IEEE Trans. Signal Process., vol. 59, no. 2, pp. 629-638, Feb. 2011.
[146] D. Malioutov, M. Cetin, and A. S. Willsky, “A sparse signal reconstruction perspective for source localization with sensor arrays," IEEE Trans. Signal Process., vol. 53, no. 8, pp. 3010-3022, Aug. 2005.
[147] P. Janssen and P. Stoica, “On the expectation of the product of four matrix- valued Gaussian random variables," IEEE Trans. Automatic Control, vol. 33, no. 3, pp. 867-870, Aug. 1988.
[148] T. K. Moon, “The expectation maximization algorithm," IEEE Signal Process. Magazine, pp. 47-60, Nov. 1996.
[149] D. C. Lay, Linear Algebra with Its Applications. 4th ed. Pearson, Inc., 2011.
[150] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge, 1985.

QR CODE